首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
To better understand the evolutionary dynamics of repetitive sequences in human sex chromosomes, we have analyzed seven new X/Y homologous microsatellites located within PCDHX/Y, one of the two recently described gene pairs in the Xq21.3/Yp11.2 hominid-specific homology block, in samples from Portugal and Mozambique. Sharp differences were observed on X/Y allele distributions, concerning both the presence of private alleles and a different modal repeat length for X-linked and Y-linked markers, and this difference was statistically significant. Higher diversity was found in X-linked microsatellites than in their Y chromosome counterparts; when comparing populations, Mozambicans showed more allele diversity for the X chromosome, but the contrary was true for the Y chromosome microsatellites. Evolutionary patterns, relying on intragenic PCDHX/Y SNPs, also revealed distinct scenarios for X and Y chromosomes. Greater microsatellite diversity was displayed by African X chromosomes within the most common haplotypes shared by both populations, whereas higher microsatellite diversity was found in Portugal for the ancestral Y chromosome haplotype. The most frequent PCDHY haplotype in Portuguese was the derived one, and it was not found in Mozambicans. TMRCA estimated by the rho parameter resulted in 13,700 years (7,500-20,000 years), which is consistent with a recent, post-Out-of-Africa origin for this haplotype. In conclusion, the newly described microsatellite loci generally displayed greater X-linked to Y-linked diversity and this pattern was also detected with slower evolving markers, with a remarkable differentiation between populations observed for Y chromosome haplotypes and, thus, greater divergence among Y chromosomes in human populations.  相似文献   

2.
Seven Y-chromosome microsatellite loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, and DYS393) were analyzed in three populations from sub-Saharan Africa: the Bamileke and Ewondo populations from Cameroon and the Hutu from Rwanda. Complete typing was obtained for 112 individuals, and a total of 53 different haplotypes was observed. The single-locus gene diversity, averaged across populations, ranges from 0.100 for the DYS392 locus to 0.610 for the DYS389I locus. The haplotype diversity ranges from 0.832 (Ewondo) to 0.965 (Hutu), with an intermediate value of 0.918 in the Bamileke. The diversity among Bamileke, Ewondo, Hutu, and other sub-Saharan populations selected from the literature was analyzed using both a classical (F(ST)) and a stepwise-based (R(ST)) genetic distance method. The pattern of interpopulational diversity based on F(ST) was congruent with anthropological knowledge, while that based on R(ST) revealed unexpected and unconvincing population affinities. From a practical point of view, our study indicates that Y-chromosome microsatellite data may provide useful information for analyses of interpopulational diversity among sub-Saharan populations if an adequate number of loci and individuals along with an appropriate genetic distance method are used. On a theoretical ground, we propose that the lesser performance of R(ST) compared to F(ST) could be explained by the important role played by genetic drift in shaping the relationships among examined populations.  相似文献   

3.
Four X-linked loci showing homology with a previously described Y-linked polymorphic locus (DYS413) were identified and characterized. By fluorescent in situ hybridization (FISH), somatic cell hybrids, and YAC screening, the X-linked members of this small family of sequences (CAIII) all map in Xp22, while the Y members map in Yq11. These loci contribute to the overall similarity of the two genomic regions. All of the CAIII loci contain an internal microsatellite of the (CA)n type. The microsatellites display extensive length polymorphism in two of the X-linked members as well as in the Y members. In addition, common sequence variants are found in the portions flanking the microsatellites in two of the X-linked members. Our results indicate that, during the evolution of this family, length variation on the Y chromosome was accumulated at a rate not slower than that on the X chromosome. Finally, these sequences represent a model system with which to analyze human populations for similar X- and Y-linked polymorphisms. Received: 29 July 1996 / Accepted: 15 January 1997  相似文献   

4.
The Geographic Distribution of Human Y Chromosome Variation   总被引:23,自引:0,他引:23       下载免费PDF全文
We examined variation on the nonrecombining portion of the human Y chromosome to investigate human evolution during the last 200,000 years. The Y-specific polymorphic sites included the Y Alu insertional polymorphism or ``YAP' element (DYS287), the poly(A) tail associated with the YAP element, three point mutations in close association with the YAP insertion site, an A-G polymorphic transition (DYS271), and a tetranucleotide microsatellite (DYS19). Global variation at the five bi-allelic sites (DYS271, DYS287, and the three point mutations) gave rise to five ``YAP haplotypes' in 60 populations from Africa, Europe, Asia, Australasia, and the New World (n = 1500). Combining the multi-allelic variation at the microsatellite loci (poly(A) tail and DYS19) with the YAP haplotypes resulted in a total of 27 ``combination haplotypes'. All five of the YAP haplotypes and 21 of the 27 combination haplotypes were found in African populations, which had greater haplotype diversity than did populations from other geographical locations. Only subsets of the five YAP haplotypes were found outside of Africa. Patterns of observed variation were compatible with a variety of hypotheses, including multiple human migrations and range expansions.  相似文献   

5.
Genetic variation of the Y chromosome in five Chibchan tribes (Bribri, Cabecar, Guaymi, Huetar, and Teribe) of Costa Rica and Panama was analyzed using six microsatellite loci (DYS19, DYS389A, DYS389B, DYS390, DYS391, and DYS393), the Y-chromosome-specific alphoid system (alphah), the Y-chromosome Alu polymorphism (YAP), and a specific pre-Columbian transition (C-->T) (M3 marker) in the DYS 199 locus that defines the Q-M3 haplogroup. Thirty-nine haplotypes were found, resulting in a haplotype diversity of 0.937. The Huetar were the most diverse tribe, probably because of their high levels of interethnic admixture. A candidate founder Y-chromosome haplotype was identified (15.1% of Chibchan chromosomes), with the following constitution: YAP-, DYS199*T, alphah-II, DYS19*13, DYS389A*17, DYS389B*10, DYS390*24, DYS391*10, and DYS393*13. This haplotype is the same as the one described previously as one of the most frequent founder paternal lineages in native American populations. Analysis of molecular variance indicated that the between-population variation was smaller than the within-population variation, and the comparison with mtDNA restriction data showed no evidence of differential structuring between maternally and paternally inherited genes in the Chibchan populations. The mismatch-distribution approach indicated estimated coalescence times of the Y chromosomes of the Q-M3 haplogroup of 3,113 and 13,243 years before present; for the mtDNA-restriction haplotypes the estimated coalescence time was between 7,452 and 9,834 years before present. These results are compatible with the suggested time for the origin of the Chibchan group based on archeological, linguistic, and genetic evidence.  相似文献   

6.
Drosophila simulans originated in sub-Saharan Africa or Madagascar and colonized the rest of the world after the last glaciation about 10 000 years ago. Consistent with this demographic history, sub-Saharan African populations have been shown to harbour higher levels of microsatellite and sequence variation than cosmopolitan populations. Nevertheless, only limited information is available on the population structure of D. simulans. Here, we analysed X-linked and autosomal microsatellite loci in four sub-Saharan African, one North African, one Israeli, and two European D. simulans populations. Bayesian clustering algorithms combined the North African, Israeli, and European populations into a single cosmopolitan group. The four sub-Saharan populations were split into two separate groups. Pairwise F(ST) analysis, however, indicated significant population differentiation between all eight populations surveyed. A significant signal for population reduction in cosmopolitan populations was found only for X-linked loci.  相似文献   

7.
Methods of estimating within- and between-population gene diversity in parthenogenetic species using mini- and microsatellite DNA markers and modified Wright's FST statistic are presented with special reference to model populations of lizards of the genus Darevskia (D. dahli, D. armeniaca, D. unisexualis). We used DNA fingerprinting data for several populations of these species examined earlier. The effects of variation in M13, minisatellite, (GACA)n and (TCC)n microsatellite loci on the formation of within-population gene diversity in parthenogenetic species D. dahli and D. armeniaca were shown to be different. The equality of the realized gene diversity H and its maximum possible value Hmax in two populations of D. dahli (Hmax = 0.032, H = 0.031, P < < 0.0431; Hmax = 0.024, H = 0.027, P = 0.09) and D. armeniaca (Hmax = 0.05, H = 0.053, P = 0.03; Hmax = 0.054, H = 0.055, P = 0.02) suggests that variation in (GACA)n loci substantially contributes to the maintenance of within-population genetic diversity. Analysis of between-population genetic diversity using loci M13, (GACA)n, and (TCC)n showed differentiation of D. dahli populations from northeastern and northwestern Armenia (FST = 0.0272, P = 3 x 10(-13)) and genetic homogeneity of the Armenian and Introduced to the Ukraine populations of D. armeniaca characteristic of one clone (FST = 0, P = 1).  相似文献   

8.
Carvalho-Silva DR  Pena SD 《Gene》2000,247(1-2):233-240
A novel microsatellite homologous to DYS391, a (GATA)(n) short tandem repeat on the human Y chromosome, was identified and characterized in the present work. Employing somatic cell hybrid and deletion panels in a PCR-based approach, we found out that the new microsatellite is located in Xp21.2-22.3, while its Y counterpart mapped to Yq11.21. This X-linked locus (provisionally called DXYS391) and its Y homolog constitute one more example of similarity outside the pseudoautosomal regions between the two human sex chromosomes. Sequencing data showed high levels of homology in the flanking regions of DXYS391 and DYS391 that differ primarily by the presence of a (GACA)(3) motif in the Y locus. Both loci were detected in chimpanzee DNA, suggesting that a putative transposition from the X to the Y occurred before the human/chimpanzee split. The allele frequencies of DYS391 and DXYS391 were investigated, respectively, in 271 Y and 337 X chromosomes from distinct human populations worldwide. DYS391 consistently displayed greater among-population component of the variance of the allele frequencies than DXYS391, as expected due to the three-times lower effective population size of Y chromosomes relative to the X. The intra-population diversity of DYS391, measured by Nei's locus diversity as well as by allele size variance, was lowest in Amerindians, while very low diversity of DXYS391 was seen in Africans. Since our African data are based on a small sample, further studies will be necessary to evaluate better this observation.  相似文献   

9.
Allelic polymorphism of five microsatellite loci of the human Y chromosome (DYS19, DYS390, DYS391, DYS392, and DYS393) was analyzed in samples of male populations from Ukraine, Russia, and Belarus (152 subjects in total). The allelic diversity indices (Dg) were determined for all loci; they varied from 0.23 to 0.72. The mean values of this parameter in the Ukrainian, Russian, and Belarussian populations were 0.45, 0.47, and 0.52, respectively. A total of 53 different haplotypes were found in 152 subjects from three populations. The most frequent haplotype was found in 14.5% of the subjects, whereas 35 haplotypes (23%) were each found in only one person. The haplotypic diversity index (Dhp) was 0.94. The genetic distances between the populations studied and some populations of Western and Central Europe were estimated. These data were used to construct a phylogram (tree) of genetic similarity between the populations, which demonstrated that the three Eastern Slavic populations are genetically close to one another and remote from Western European populations.  相似文献   

10.
The emerging availability of microsatellite markers from mammalian sex chromosomes provides opportunities to investigate both male- and female-mediated gene flow in wild populations, identifying patterns not apparent from the analysis of autosomal markers alone. Tammar wallabies (Macropus eugenii), once spread over the southern mainland, have been isolated on several islands off the Western Australian and South Australian coastlines for between 10 000 and 13 000 years. Here, we combine analyses of autosomal, Y-linked and X-linked microsatellite loci to investigate genetic variation in populations of this species on two islands (Kangaroo Island, South Australia and Garden Island, Western Australia). All measures of diversity were higher for the larger Kangaroo Island population, in which genetic variation was lowest at Y-linked markers and highest at autosomal markers (θ=3.291, 1.208 and 0.627 for autosomal, X-linked and Y-linked data, respectively). Greater relatedness among females than males provides evidence for male-biased dispersal in this population, while sex-linked markers identified genetic lineages not apparent from autosomal data alone. Overall genetic diversity in the Garden Island population was low, especially on the Y chromosome where most males shared a common haplotype, and we observed high levels of inbreeding and relatedness among individuals. Our findings highlight the utility of this approach for management actions, such as the selection of animals for translocation or captive breeding, and the ecological insights that may be gained by combining analyses of microsatellite markers on sex chromosomes with those derived from autosomes.  相似文献   

11.
We have analyzed five Y-specific microsatellite loci (DYS388, DYS390, DYS391, DYS394, DYS395) in 17 Asian and Pacific populations representing a broad geographical area and different linguistic families, with an emphasis on populations from mainland and insular Southeast Asia. Analysis of gene diversity indicates that several of the studied populations have experienced substantial genetic isolation, and a reduction in male effective sizes (viz. the Northeast Indian populations Nishi, Adi and the Taiwanese aboriginals). The average values of the FST and (ST statistics indicate a high degree of genetic differentiation among these populations at the five Y-specific markers (FST =0.21 and (ST = 0.33, based on individual loci; FST = 0.09 and (ST = 0.36, based on haplotypes), which conform to the expectation of a fourfold smaller effective size of the Y-linked loci compared with the autosomal loci. Dendrogram and principal coordinates analysis, with few exceptions, show a major separation between mainland and insular populations. Among the mainland populations, the Tibeto-Burman speakers from Northeast India cluster in a well-defined group, supported by high bootstrap values. The Southern Chinese, Northern Thai, So, and Cambodian also are integral to this cluster. The other major cluster is rather heterogeneous and includes, among others, the Austronesian-speaking populations. The Samoans of the Pacific, with a distinctive pattern of allelic distributions, stand as an outlier in the tree and PC representations. Although trends of genetic affinities among ethnically and geographically related populations are evident from the Y-specific microsatellite data, microsatellites are not optimal for deciphering complex migratory patterns of human populations, which could possibly be clarified by using additional and more stable genetic markers. Am J Phys Anthropol 110: 1–16, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

12.
Formulae for the effective population sizes of autosomal, X-linked, Y-linked and maternally transmitted loci in age-structured populations are developed. The approximations used here predict both asymptotic rates of increase in probabilities of identity, and equilibrium levels of neutral nucleotide site diversity under the infinite-sites model. The applications of the results to the interpretation of data on DNA sequence variation in Drosophila, plant, and human populations are discussed. It is concluded that sex differences in demographic parameters such as adult mortality rates generally have small effects on the relative effective population sizes of loci with different modes of inheritance, whereas differences between the sexes in variance in reproductive success can have major effects, either increasing or reducing the effective population size for X-linked loci relative to autosomal or Y-linked loci. These effects need to be accounted for when trying to understand data on patterns of sequence variation for genes with different transmission modes.  相似文献   

13.
The roan antelope (Hippotragus equinus) is the second largest African antelope, distributed throughout the continent in sub-Saharan savannah habitat. Mitochondrial DNA (mtDNA) control region sequencing (401 bp, n = 137) and microsatellite genotyping (eight loci, n = 137) were used to quantify the genetic variability within and among 18 populations of this species. The within-population diversity was low to moderate with an average mtDNA nucleotide diversity of 1.9% and average expected heterozygosity with the microsatellites of 46%, but significant differences were found among populations with both the mtDNA and microsatellite data. Different levels of genetic resolution were found using the two marker sets, but both lent strong support for the separation of West African populations (samples from Benin, Senegal and Ghana) from the remainder of the populations studied across the African continent. Mismatch distribution analyses revealed possible past refugia for roan in the west and east of Africa. The West African populations could be recognized together as an evolutionarily significant unit (ESU), referable to the subspecies H. e. koba. Samples from the rest of the continent constituted a geographically more diverse assemblage with genetic associations not strictly corresponding to the other recognized subspecies.  相似文献   

14.
The variation of 77 biallelic sites located in the nonrecombining portion of the Y chromosome was examined in 608 male subjects from 22 African populations. This survey revealed a total of 37 binary haplotypes, which were combined with microsatellite polymorphism data to evaluate internal diversities and to estimate coalescence ages of the binary haplotypes. The majority of binary haplotypes showed a nonuniform distribution across the continent. Analysis of molecular variance detected a high level of interpopulation diversity (PhiST=0.342), which appears to be partially related to the geography (PhiCT=0.230). In sub-Saharan Africa, the recent spread of a set of haplotypes partially erased pre-existing diversity, but a high level of population (PhiST=0.332) and geographic (PhiCT=0.179) structuring persists. Correspondence analysis shows that three main clusters of populations can be identified: northern, eastern, and sub-Saharan Africans. Among the latter, the Khoisan, the Pygmies, and the northern Cameroonians are clearly distinct from a tight cluster formed by the Niger-Congo-speaking populations from western, central western, and southern Africa. Phylogeographic analyses suggest that a large component of the present Khoisan gene pool is eastern African in origin and that Asia was the source of a back migration to sub-Saharan Africa. Haplogroup IX Y chromosomes appear to have been involved in such a migration, the traces of which can now be observed mostly in northern Cameroon.  相似文献   

15.
Allelic polymorphism of five microsatellite loci of the human Y chromosome (DYS19, DYS390, DYS391, DYS392, and DYS393) was analyzed in samples of male populations from Ukraine, Russia, and Belarus (152 subjects in total). The allelic diversity indices (D g) were determined for all loci; they varied from 0.23 to 0.72. The mean values of this parameter in the Ukrainian, Russian, and Belarussian populations were 0.45, 0.47, and 0.52, respectively. A total of 53 different haplotypes were found in 152 subjects from three populations. The most frequent haplotype was found in 14.5% of the subjects, whereas 35 haplotypes (23%) were each found in only one person. The haplotypic diversity index (D hp) was 0.94. The genetic distances between the populations studied and some populations of Western and Central Europe were estimated. These data were used to construct a phylogram (tree) of genetic similarity between the populations, which demonstrated that the three Eastern Slavic populations are genetically close to one another and remote from Western European populations.  相似文献   

16.
Wright's FST and related statistics are often used to measure the extent of divergence among populations of the same species relative to the net genetic diversity within the species. This paper compares several definitions of FST which are relevant to DNA sequence data, and shows that these must be used with care when estimating migration parameters. It is also pointed out that FST is strongly influenced by the level of within-population diversity. In situations where factors such as selection on closely linked sites are expected to have stronger effects on within-population diversity at some loci than at others, differences among loci can result entirely from differences in within- population diversities. It is shown that several published cases of differences in FST among regions of high and low recombination in Drosophila may be caused in this way. For the purpose of comparisons of levels of between-population differences among loci or species which are subject to different intensities of forces that reduce variability within local populations, absolute measures of divergence between populations should be used in preference to relative measures such as FST.   相似文献   

17.
调查陕西渭南地区汉族群体17个Y-STR基因座的多态性,探讨其群体遗传学及法医学应用价值。应用Y-fi ler荧光标记复合扩增系统,对413名陕西渭南地区汉族无关男性个体17个Y-STR基因座进行复合扩增,用ABI3130遗传分析仪进行基因分型,计算各基因座的群体遗传学参数,并结合已经发表的其他10个群体相应基因座的单倍型资料,分析各群体间的遗传距离。413名陕西渭南汉族个体共检出405种单倍型,其中397种单倍型仅出现1次,单倍型多样性达0.9999,基因多样性(GD)为0.4130(DYS391)~0.9734(DYS385a/b),累计GD值为0.9999。遗传距离分析提示,陕西渭南汉族与辽宁满族的遗传距离最小(0.00110),与青海藏族的遗传距离最大(0.22333)。结果表明,17个Y-STR基因座在陕西渭南汉族群体中具有丰富的遗传多态性和较高的非父排除能力,在法医学和人类群体遗传学研究中具有重要价值。  相似文献   

18.
黄艳梅  祁英杰  朱运良  童大跃  伍新尧 《遗传》2007,29(10):1214-1214―1222
建立了FAM(蓝色荧光)标记的DYS456、DYS464a/b/c/d和DYS527a/b和JOE(绿色荧光)标记的DYS531、DYS709、DYS448和DYS522 7个Y染色体STR基因座(相当于11个位点)复合扩增分型体系。利用ABI3100遗传分析仪调查中国广东汉族151例和河南106例汉族无关男性个体的遗传多态性分布, 并探讨在法医学中的应用价值。结果显示, 此方法能作出正确分型的最低基因组DNA量为0.02 ng; 在女性成份为男性成份150倍的混合DNA样本(总DNA量为160 ng)中能正确检出全部7个Y-STR基因座的基因型。 广东和河南2个汉族男性群体中, 观察到的单体型分别有150、105种, 其中仅观察到1次的单体型分别有149、104种, 单体型多样性(HD)分别为0.999912、0.999820; 这组Y-STR单体型在两个群体中的分布差异有统计学显著意义(秩和检验: P<0.001)。此7个Y-STR基因座多态性分析适用于法医学实践和人类进化的研究。  相似文献   

19.
Crawford AJ 《Molecular ecology》2003,12(10):2525-2540
Molecular genetic data were used to investigate population sizes and ages of Eleutherodactylus (Anura: Leptodactylidae), a species-rich group of small leaf-litter frogs endemic to Central America. Population genetic structure and divergence was investigated for four closely related species surveyed across nine localities in Costa Rica and Panama. DNA sequence data were collected from a mitochondrial gene (ND2) and a nuclear gene (c-myc). Phylogenetic analyses yielded concordant results between loci, with reciprocal monophyly of mitochondrial DNA haplotypes for all species and of c-myc haplotypes for three of the four species. Estimates of genetic differentiation among populations (FST) based upon mitochondrial data were always higher than nuclear-based FST estimates, even after correcting for the expected fourfold lower effective population size (Ne) of the mitochondrial genome. Comparing within-population variation and the relative mutation rates of the two genes revealed that the Ne of the mitochondrial genome was 15-fold lower than the estimate of the nuclear genome based on c-myc. Nuclear FST estimates were approximately 0 for the most proximal pairs of populations, but ranged from 0.5 to 1.0 for all other pairs, even within the same nominal species. The nuclear locus yielded estimates of Ne within localities on the order of 105. This value is two to three orders of magnitude larger than any previous Ne estimate from frogs, but is nonetheless consistent with published demographic data. Applying a molecular clock model suggested that morphologically indistinguishable populations within one species may be 107 years old. These results demonstrate that even a geologically young and dynamic region of the tropics can support very old lineages that harbour great levels of genetic diversity within populations. The association of high nucleotide diversity within populations, large divergence between populations, and high species diversity is also discussed in light of neutral community models.  相似文献   

20.
Previous studies of genetic and craniometric traits have found higher levels of within-population diversity in sub-Saharan Africa compared to other geographic regions. This study examines regional differences in within-population diversity of human skin color. Published data on skin reflectance were collected for 98 male samples from eight geographic regions: sub-Saharan Africa, North Africa, Europe, West Asia, Southwest Asia, South Asia, Australasia, and the New World. Regional differences in local within-population diversity were examined using two measures of variability: the sample variance and the sample coefficient of variation. For both measures, the average level of within-population diversity is higher in sub-Saharan Africa than in other geographic regions. This difference persists even after adjusting for a correlation between within-population diversity and distance from the equator. Though affected by natural selection, skin color variation shows the same pattern of higher African diversity as found with other traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号