首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The catalytic potential of chloroperoxidase (CPO) immobilized on mesoporous materials was evaluated for the oxidation of 4,6-dimethyldibenzothiophene in water/acetonitrile mixtures. Two different types of materials were used for the immobilization: a metal containing Al-MCM-41 material with a pore size of 26 A and SBA-16 materials with three different pore sizes: 40, 90 and 117 A. The SBA-16 40 A did not retain any CPO. The nature and the pore size of the material affected the catalytic activity of the enzyme as well as its stability. Compared to the free enzyme, the thermal stability of CPO at 45 degrees C was two and three times higher than when immobilized on Al-MCM-41 and SBA-16 90 A, respectively.  相似文献   

2.
Chloroperoxidase (CPO) from Caldariomyces fumago was optimally covalently immobilized on chitosan membranes pretreated with 0.8 M glutaraldehyde at pH 3.5 to give 3.18 mg CPO g−1 support. Using monochlorodimedone (MCD) as assay substrate, the immobilized-CPO retained 40% activity at 50°C after 40 min whereas free CPO retained only 0.02%. The residual activity for immobilized-CPO was 99 and 58% compared with 68 and 43% for free CPO in the presence of 1.5 M urea and 300 μM H2O2, respectively, after 20 h.  相似文献   

3.
New desulfurizing bacteria able to convert dibenzothiophene into 2-hydroxybiphenyl and sulfate were isolated from contaminated soils collected in Mexican refineries. Random amplified polymorphic DNA analysis showed they were different from previously reported Rhodococcus erythropolis desulfurizing strains. According to 16S rRNA gene sequencing and fatty acid analyses, these new isolates belonged to the genus Rhodococcus. These strains could desulfurize 4,6-dimethyldibenzothiophene which is one of the most difficult dibenzothiophene derivatives to remove by hydrodesulfurization. A deeply hydrodesulfurized diesel oil containing significant amounts of 4,6-dimethyldibenzothiophene was treated with Rhodococcus sp. IMP-S02 cells. Up to 60% of the total sulfur was removed and all the 4,6-dimethyldibenzothiophene disappeared as a result of this treatment.  相似文献   

4.
Chloroperoxidase (CPO) was covalently immobilized on poly(hydroxypropyl methacrylate-co-polyethyleneglycole-methacrylate) membranes, which were characterized, by swelling test, FT-IR spectroscopy, scanning electron microscopy, and contact angle measurement. The Km and Vmax values for free and immobilized CPO were found to be 34.6 and 47.2 μM, and 287.5 and 245.2 U/mg protein, respectively. The optimum pH for both the free and immobilized enzyme was observed at 3.0. The immobilized enzyme showed wide pH and temperature profiles. Most importantly, the increased thermal, storage and operational stability of immobilized CPO should depend on the creation of a comfortable strong hydrophilic microenvironment on the designed support to the host enzyme molecule.  相似文献   

5.
Chloroperoxidase (CPO) from Caldariomyces fumago was analysed for its ability to oxidize ten different monoterpenes with hydrogen peroxide as oxidant. In the absence of halide ions geraniol and, to a lesser extent, citronellol and nerol were converted into the corresponding aldehydes, whereas terpene hydrocarbons did not serve as substrates under these conditions. In the presence of chloride, bromide and iodide ions, every terpene tested was converted into one or more products. (1S)-(+)-3-carene was chosen as a model substrate for the CPO-catalysed conversion of terpenes in the presence of sodium halides. With chloride, bromide and iodide, the reaction products were the respective (1S,3R,4R,6R)-4-halo-3,7,7-trimethyl-bicyclo[4.1.0]-heptane-3-ols, as identified by 1H and 13C nuclear magnetic resonance. These product formations turned out to be strictly regio- and stereoselective and proceeded very rapidly and almost quantitatively. Initial specific activities of halohydrin formation increased from 4.22 U mg−1 with chloride to 12.22 U mg−1 with bromide and 37.11 U mg−1 with iodide as the respective halide ion. These results represent the first examples of the application of CPO as a highly efficient biocatalyst for monoterpene functionalization. This is a promising strategy for ‘green’ terpene chemistry overcoming drawbacks usually associated with cofactor-dependent oxygenases, whole-cell biocatalysts and conventional chemical methods used for terpene conversions.  相似文献   

6.
One of the most interesting methods for the detoxification of sulfur mustard is enzyme-catalyzed oxidation. This study examined the oxidative destruction of a sulfur mustard by the enzyme chloroperoxidase (EC 1.11.1.10). Chloroperoxidase (CPO) belongs to a group of enzymes that catalyze the oxidation of various organic compounds by peroxide in the presence of a halide ion. The enzymatic oxidation reaction is affected by several factors: pH, presence or absence of chloride ion, temperature, the concentrations of hydrogen peroxide and enzyme and aqueous solubility of the substrate. The optimum reaction conditions were determined by analyzing the effects of all factors, and the following conditions were selected: solvent, Britton–Robinson buffer (pH = 3) with tert-butanol (70:30 v/v); CPO concentration, 16 U/mL; hydrogen peroxide concentration, 40 mmol/L; sodium chloride concentration, 20 mmol/L. Under these reaction conditions, the rate constant for the reaction is 0.006 s−1. The Michaelis constant, a measure of the affinity of an enzyme for a particular substrate, is 1.87 × 10−3 M for this system. The Michaelis constant for enzymes with a high affinity for their substrate is in the range of 10−5 to 10−4 M, so this value indicates that CPO does not have a very high affinity for sulfur mustard.  相似文献   

7.
A sigmoidal kinetic behavior of chloroperoxidase for the oxidation of 4,6-dimethyldibenzothiophene (4,6-DMDBT) in water-miscible organic solvent is for the first time reported. Kinetics of 4,6-DMDBT oxidation showed a cooperative profile probably due to the capacity of chloroperoxidase to recognize a substrate dimer (pi-pi dimer) in its active site. Experimental evidence is given for dimer formation and its presence in the active site of chloroperoxidase. The kinetic data were adjusted for a binding site able to interact with either monomer or dimer substrates, producing a cooperative model describing a one-site binding of two related species. Determination of kinetics constants by iterative calculations of possible oxidation paths of 4,6-DMDBT suggests that kinetics oxidation of dimer substrate is preferred when compared to monomer oxidation. Steady-state fluorometry of substrate in the absence and presence of chloroperoxidase, described by the spectral center of mass, supports this last conclusion.  相似文献   

8.
Treatment of N-methoxycarbonyl C-carboxylate ester derivatives of S-methyl- -cysteine by chloroperoxidase (CPO)/hydrogen peroxide resulted in oxidation at sulfur to produce the (RS) sulfoxide in moderate to high diastereomeric excess (DE). The (SS) natural product sulfoxide chondrine was obtained via biotransformation of the N-t.boc derivative of -4-S-morpholine-2-carboxylic acid using Beauveria bassiana or Beauveria caledonica.  相似文献   

9.
果胶酶的固定化研究   总被引:13,自引:0,他引:13  
本文研究了以重氮化的对—氨基苯磺酰乙基纤维素为载体制各固定化果胶酶的最适条件,并比较了固定化果胶酶与游离酶的性质。结果表明,最适的固定化果胶酶的条件是:在pH7.00.15M的磷酸盐缓冲液中,按每克载体加入2163活力单位的酶的比例进行偶联反应12小时。在以上最适条件下,固定化果胶酶的表观活力为1980U/g,活力回收率为87%。与游离酶相比,固定化果过酶作用的最适pH由4.6移至4.2,最适温度变宽,酶的热稳定性增强,操作稳定性良好,半衰期为32.5天。  相似文献   

10.
纤维素固相化木瓜蛋白酶   总被引:1,自引:0,他引:1  
 本文用叠氮法制备了纤维素固相化木瓜蛋白酶(简称CMCP)。与相应酶液水解酪蛋白的反应相比,它表现出较低的酶活性,较高的最适pH值和较高的稳定性。CMCP的比活回收率约为24%,最适pH值向碱性范围移动约为0.5个单位。CMCP经60℃热处理,持续3h活性无明显下降,在4℃下保存127天,活性只下降了40%左右。对这些参数,本文都根据CMCP的结构特点进行了分析。 CMCP柱还表现出明显的对啤酒的防浊能力。过柱的啤酒,氨基酸的含量大大增加。  相似文献   

11.
以自制的壳聚糖作为载体,用戊二醛作交联剂,优化了固定化条件,研制成壳聚糖固定化木瓜蛋白酶。其活性回收率达到42—53%,操作半衰期达到一个月以上,对热、乙醇以及尿素的稳定性有很大的提高,Km值为0.67×10~2mg/mL,最适温度65—70℃,最适pH8.0,能使啤酒中的蛋白质浓度从56.5mg/L减少到2.7mg/L,可以消除啤酒的低温混浊现象。  相似文献   

12.
漆酶在磁性壳聚糖微球上的固定及其酶学性质研究   总被引:5,自引:0,他引:5  
以磁性壳聚糖微球为载体,戊二醛为交联剂,共价结合制备固定化漆酶。探讨了漆酶固定化的影响因素,并对固定化漆酶的性质进行了研究。确定漆酶固定化适宜条件为:50 mg磁性壳聚糖微球,加入10mL 0.8mg/mL 漆酶磷酸盐缓冲液(0.1mol/L,pH 7.0),在4℃固定2h。固定化酶最适pH为3.0, 最适温度分别为10℃和55℃,均比游离酶降低5℃。在pH 3.0,温度37℃时,固定化酶对ABTS的表观米氏常数为171.1μmol/L。与游离酶相比,该固定化漆酶热稳定性明显提高,并具有良好的操作和存储稳定性。  相似文献   

13.
以壳聚糖为载体,成二醛为交联剂将木瓜蛋白酶固定化。5%戊二醛在4-6℃下处理载体5h,加酶液(3.5mg/mL蛋白,pH7.2)固定12h,活力回收达32%,作用于酪蛋白的半衰期为36天,其表观K_m(酪蛋白)值为0.075%(W/V),溶液酶的K_m值为0.086%;最适pH7.0~7.5,溶液酶为7.0~8.5。固定化酶在pH8.5以下,溶液酶在9.0以下活力稳定。固定化酶在45℃以下,溶液酶在75℃以下稳定。用6mol/L脲洗脱固定化酶4次(5.5h)活力仍有54.5%。用固定化酶处理啤酒浊度比对照下降了1.5-3.7倍,蛋白质含量下降了44%,冷藏(4℃)120天无冷混浊现象发生并保持了啤酒原有风味和理化性状。  相似文献   

14.
 以自制的脱乙酰壳多糖作载体,戊二醛为交联剂,对胰蛋白酶的固定化条件及其固定化酶的性质进行了研究。考查了交联剂的用量、pH值、以及载体与酶的比例等因素对胰蛋白酶固定化的影响。在所选择的固定化条件下,固定化酶的活性回收可达50%以上。同时研究了固定化胰蛋白酶的一些性质;最适温度60℃,最适PH8.0,Km值比可溶性酶升高,热稳定性、pH贮存稳定性以及在乙醇水溶液中的稳定性明显高于可溶性胰蛋白酶。在柱式反应器内,以2%酪蛋白为底物对,操作半衰期为40天。  相似文献   

15.
Immobilization of lipases involves many levels of complications relating to the structure of the active site and its interactions with the immobilization support. Interaction of the so called hydrophobic ‘lid’ with the support has been reported to affect synthetic activity of an immobilized lipase. In this work we evaluate and compare the synthetic activity of lipases from different sources immobilized on different kinds of supports with varying hydrophobicity. Humicola lanuginosa lipase, Candida antarctica lipase B and Rhizomucor miehei lipase were physically adsorbed onto two types of hydrophobic carriers, namely hydrophilic carriers with conjugated hydrophobic ligands, and supports with base matrix hydrophobicity. The prepared immobilized enzymes were used for acylation of n-butanol with oleic acid as acyl donor in iso-octane with variable water content (0–2.8%, v/v) as reaction medium. Enzyme activity and effect of water on the activity of the immobilized derivatives were compared with those of respective soluble lipases and a commercial immobilized lipase Novozyme 435. Both R. miehei and H. lanuginosa immobilized lipases showed maximum activity at 1.39% (v/v) added water concentration. Sepabeads, a methacrylate based hydrophilic support with conjugated octadecyl chain showed highest immobilized esterification (synthetic) activity for all three enzymes, and of the three R. miehei lipase displayed maximum esterification activity comparable to the commercial enzyme.  相似文献   

16.
This work is aimed to immobilize partially purified horseradish peroxidase (HRP) on wool activated by multifunctional reactive center, namely cyanuric chloride. The effect of cyanuric chloride concentration, pH and enzyme concentration on immobilization of HRP was studied. FT-IR and SEM analyses were detected for wool, activated wool and immobilized wool-HRP. The wool-HRP, prepared at 2% (w/v) cyanuric chloride and pH 5.0, retained 50% of initial activity after seven reuses. The wool-HRP showed broad optimum pH at 7.0 and 8.0, which was higher than that of the soluble HRP (pH 6.0). The soluble HRP had an optimum temperature of 30 °C, which was shifted to 40 °C for immobilized enzyme. The soluble and wool-HRP were stable up to 30 and 40 °C after incubation for 1 h, respectively. The apparent kinetic constant values (Kms) of wool-HRP were 10 mM for guiacol and 2.5 mM for H2O2, which were higher than that of soluble HRP. The wool-HRP was remarkably more stable against proteolysis mediated by trypsin. The wool-HRP exhibited more resistance to heavy metal induced inhibition. The wool-HRP was more stable to the denaturation induced by urea, Triton X-100, isopropanol, butanol and dioxan. The wool-HRP was found to be the most stable under storage. In conclusion, the wool-HRP could be more suitable for several industrial and environmental purposes.  相似文献   

17.
Acidithiobacillus ferrooxidans was immobilized in poly(vinyl alcohol) (PVA) by a PVA–boric acid method, and spherical beads of uniform size were produced. Biooxidation of ferrous iron by immobilized cells was investigated in repeated batch culture and continuous operation in a laboratory scale packed-bed bioreactor. During repeated batch culture, the cell-immobilized gels were stable and showed high constant iron-oxidizing activity. In continuous operation in a packed-bed bioreactor, biooxidation of ferrous iron fits a plug-flow reaction model well. A maximum Fe2+ oxidation rate of 1.89 g l−1 h−1 was achieved at the dilution rate of 0.38 h−1 or higher, while no obvious precipitate was detected in the bioreactor.  相似文献   

18.
聚氨酯固定化热带假丝酵母发酵木糖醇   总被引:1,自引:0,他引:1  
固定在多孔聚氨酯载体中的热带假丝酵母(Candida tropicalis), 可有效地利用玉米芯半纤维素水解液生产木糖醇。在摇瓶条件下, 采用分批发酵方式, 确立了适宜的发酵工艺参数为: 接种量7%, 聚氨酯加入量1.0 g/100 mL, 温度30°C, 初始pH值6.0, 分段改变摇床转速进行溶氧调节, 其中0~24 h 为200 r/min; 24 h~46 h为140 r/min。聚氨酯固定化提高了菌体对发酵抑制物的耐受力, 固定化细胞密度高, 发酵性能稳定, 发酵产率和体积生产速率都有所提高。水解液未经脱色与离子交换便可转化成木糖醇, 大幅降低了成本, 显示了良好的应用前景。固定化细胞连续重复进行12批次21 d的发酵, 木糖醇得率平均为67.6%, 体积生产速率平均为1.92 g/(L·h)。  相似文献   

19.
烟草多酚氧化酶的分离与固定化技术研究   总被引:19,自引:0,他引:19  
多酚氧化酶属于氧化还原酶类,国际酶学委员会推荐名为儿茶酚氧化酶(EC1.10.3.1polyphenoloxidase,PPO).该酶与食品工业、三废处理、医药卫生关系较为密切,因而研究较多.如近年来鸭梨[1]、蘑菇[2]、香蕉果肉组织[3]、荔枝果皮[4]等等中的多酚氧化酶均有研究报道.目前研究用固定化多酚氧化酶检测废水中酚类物质含量,进行环境检测;及其从工业废水中除去酚类,达到治理三废的目的.Mosbacn[5](1976)研制成多酚氧化酶固定化酶柱,与氧电极检测器组合联用,可检测水中20…  相似文献   

20.
以乙基纤维素作膜材,用液中干燥法使过氧化氢酶微胶囊化。研究了微胶囊化操作条件对酶活性的影响。通过测定微胶囊化酶的释放曲线,证明微胶囊膜对过氧化氢酶具有较好的固定性能力。固定化酶用于催化底物过氧化氢分解,测定米氏常数为0.55mol/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号