首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma membranes from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distibutions of the plasma membrane markers, Na+ + K+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.  相似文献   

2.
It is well established that phosphate deficiency induces the replacement of membrane phospholipid with non-phosphorous lipids in extra-plastidial membranes (e.g. plasma membrane, tonoplast, mitochondria). The predominant replacement lipid is digalactosyl diacylglycerol (DGDG). This paper reports that the phospholipid-to-DGDG replacement is reversible, and that when oat seedlings are re-supplied with radio-labelled phosphate, it is initially recovered primarily in phosphatidylcholine (PC). Within 2 d, the shoot contains more than half of the lipid-associated radiolabel, reflecting phosphate translocation. Oat was also cultivated in different concentrations of phosphate and the DGDG/PC ratio in roots and phospholipase activities in isolated plasma membranes was assayed after different times of cultivation. The DGDG/PC ratio in root tissue correlated more closely with plasma membrane-localized phospholipase D, yielding phosphatidic acid (PA), than with plasma membrane-localized PA phosphatase, the activity that results in a decreased proportion of phospolipids. The lipid degradation data did not reflect a significant involvement of phospholipase C, although a putative phospholipase C analogue, non-specific phospholipase C4 (NPC4), was present in oat roots. The correlation between increased phospholipase D activity and DGDG/PC ratio is consistent with a model where phospholipid-to-DGDG replacement involves formation of PA that readily is removed from the plasma membrane for further degradation elsewhere.  相似文献   

3.
Lin Q  Higgs HN  Glomset JA 《Biochemistry》2000,39(31):9335-9344
We previously purified a cytosolic phospholipase A1 that could catalyze the preferential hydrolysis of phosphatidic acid in mixed-micelle assays. Here we studied the enzyme's interactions with unilamellar lipid membranes and examined effects of the lipids on enzyme binding, stability, and catalysis. A major finding was that membrane lipids could influence the stability, activity, and specificity of the enzyme under conditions where enzyme binding to the membranes was likely to be saturated. Thus, the enzyme was unstable at 37 degrees C in the absence of membranes but bound to membranes that contained anionic phosphoglycerides and could be stabilized by these membranes in the presence of albumin. The overall activity of the bound enzyme toward membrane phosphoglycerides, assayed in the presence of albumin, increased when phosphatidylethanolamine was substituted for phosphatidylcholine. Furthermore, the enzyme's catalytic preference for phosphatidic acid increased when cholesterol and diacylglycerol were included in the membranes, sn-1-stearoyl-2-arachidonoylphosphatidylethanolamine was substituted for sn-1-palmitoyl-2-oleoylphosphatidylethanolamine, and the concentration of phosphatidic acid was increased from 0 to 10 mol % of the total membrane phosphoglycerides. Finally, changes in the relative contents of phosphatidylcholine and phosphatidylserine in the membranes influenced the enzyme's catalytic preference for different molecular species of phosphatidic acid. These results provide the first available information about the enzyme's ability to interact with membranes and identify conditions that yield high enzyme activity toward membrane-associated phosphatidic acid.  相似文献   

4.
Plasma membrane phosphatidic acid phosphohydrolase (PAPH) plays an important role in signal transduction by converting phosphatidic acid to diacylglycerol. PAPH-2, a Mg2+-independent, detergent-dependent enzyme involved in cellular signal transduction, is reportedly absent from the plasma membranes of neutrophilic leukocytes, a cell that responds to metabolic stimulation with abundant phospholipase -dependent diacylglycerol generation. The present study was designed to resolve this discrepancy, focusing on the influence of cellular disruption techniques, detergenta availability and cation sensitivity on the apparent distribution of PAPH in neutrophil sub-cellular fractions. The results clearly indicate the presence of two distinct types of PAPH within the particulate and cytosolic fractions of disrupted cells. Unlike the cytosolic enzyme, the particulate enzyme was not potentiated by magnesium and was strongly detergent-dependent. The soluble and particulate enzymes displayed dissimilar pH profiles. Separation of neutrophil particulate material into fractions rich in plasma membranes, specific granules and azurophilic granules by high speed discontinuous density gradient centrifugation revealed that the majority of the particulate activity was confined to plasma membranes. This activity was not inhibited by pretreatment with n-ethyl-maleimide in concentrations as high as 25 mM. PAPH activity recovered in the cytosolic fraction of disrupted neutrophils was almost completely inhibited by 5.0 mM n-ethylmaleimide. We conclude that resting neutrophils possess n-ethylmaleimide-resistant PAPH (type 2) within their plasma membranes. This enzyme may markedly influence the kinetics of cell activation by metabolizing second messengers generated as a result of activation of plasma membrane phospholipase D.  相似文献   

5.
We have studied the effect of choline on the activity and temperature dependency of the brush-border alkaline phosphatase isoenzymes from rat intestine (tissue-specific type), and from kidney and placenta (tissue-nonspecific type). The removal of choline with phospholipase D resulted in the loss of enzyme activity in all the membranes, whereas in situ loss in the discontinuity of Arrhenius plots occurred in the kidney and the placental membranes, but not in the intestinal membranes. The lost activity was restored either by addition of free choline or phosphatidylcholine or by the removal of the enzyme from the membrane surface. Intestinal enzyme was removed by papain, while the tissue-nonspecific enzyme was released by subtilisin and by phosphatidylinositol-specific phospholipase C. The enzyme from kidney and placental membranes aggregated (rho = 1.13) upon removal of choline, and addition of choline resulted in disaggregation (rho = 1.03). Conversion of discontinuous to continuous linear plots of alkaline phosphatase in the kidney and placental membranes paralleled the increase in membrane phosphatidic acid content, and the decrease in total phosphatidylcholines. The intestinal enzyme produced plots with break points at all phosphatidic acid/phosphatidylcholine ratios. The change brought about by treatment with phospholipidase D was not due to changes in the half-saturation kinetics (Km) for the substrate. Based on these studies we conclude that the active site of the tissue-nonspecific phosphatase is approximated to exterior membrane cholines, as in the case of the intestinal isoenzyme; that despite similar effects on the membrane content of phospholipids, phospholipase D treatment caused much greater effects on the tissue-nonspecific enzyme, as assessed by Arrhenius plots and density centrifugation; that these effects are due to different protein structures rather than to a lipid milieu unique to each brush-border membrane.  相似文献   

6.
Lipid-protein interactions with purified membranous intestinal alkaline phosphatase have been studied by using rat intestine. The enzyme was incorporated equally well into neutral lecithin and anionic liposomes, including those made from phosphatidic acid alone. It could not be solubilized with chaotropic salts nor by phospholipases C and D from either native membranes or phospholipid vesicles. Detergents effected nearly complete release of enzyme from the vesicles. Phosphatase activity was lost upon treatment with phospholipase D alone. The activity was restored with free choline, or choline containing phospholipids, but not by the addition of other phospholipids or amines. The catalytic activity was also lower when the enzyme was bound to a phosphatidylcholine vesicle containing additional phosphatidic acid. Neither phosphatidylserine nor phosphatidylinositol addition altered enzyme activity. These results show that the enzyme binds to the membrane by a primary hydrophobic interaction with membrane phospholipids without requiring the polar head group and that the enzyme activity is affected via a secondary interaction with choline. We suggest that choline protects the active site of brush border alkaline phosphatase from inhibition by endogenous membrane phosphate groups.  相似文献   

7.
Evidence for the involvement of Ca2+ and calmodulin in the regulation of phospholipid breakdown by microsomal membranes from bean cotyledons has been obtained by following the formation of radiolabeled degradation products from [U-14C]phosphatidylcholine. Three membrane-associated enzymes were found to mediate the breakdown of [U-14C] phosphatidylcholine, viz. phospholipase D (EC 3.1.4.4), phosphatidic acid phosphatase (EC 3.1.3.4), and lipolytic acyl hydrolase. Phospholipase D and phosphatidic acid phosphatase were both stimulated by physiological levels of free Ca2+, whereas lipolytic acyl hydrolase proved to be insensitive to Ca2+. Phospholipase D was unaffected by calmodulin, but the activity of phosphatidic acid phosphatase was additionally stimulated by nanomolar levels of calmodulin in the presence of 15 micromolar free Ca2+. Calmidazolium, a calmodulin antagonist, inhibited phosphatidic acid phosphatase activity at IC50 values ranging from 10 to 15 micromolar. Thus the Ca2+-induced stimulation of phosphatidic acid phosphatase appears to be mediated through calmodulin, whereas the effect of Ca2+ on phospholipase D is independent of calmodulin. The role of Ca2+ as a second messenger in the initiation of membrane lipid degradation is discussed.  相似文献   

8.
Evidence has been obtained for the involvement of μ M levels of Ca2+ in phospholipid catabolism during petal senescence by following the breakdown of [U-14C]-phosphatidylcholine by microsomal membranes from cut carnation ( Dianthus caryophyllus L. cv. White-sim) flowers. Phospholipid degradation was mediated by three membrane-associated lipases, viz. phospholipase D (EC 3.1.4.4), phosphatidic acid phosphatase (EC 3.1.3.4) and lipolytic acyl hydrolase. The activities of phospholipase D and phosphatidic acid phosphatase were stimulated by 30 and 100%, respectively, in the presence of 40 μ M free Ca2+, and the Ca2+-stimulation of phosphatidic acid phosphatase was calmodulin-dependent. When L-3-phosphatidyl-[2-3H]-inositol and L-3-phosphatidyl-[N-methyl-3H]-choline were used as substrates, inositol and choline accounted for 95 and 99%, respectively, of the water-soluble radiolabelled products. This suggests a predominance of phospholipase D activity over phospholipase C activity in these membranes.
Breakdown of membrane phospholipids in senescing carnations is known to be accelerated by treatment of young flowers with ethylene. To determine whether this involves a specific turnover of phosphatidylinositol as observed in animal systems in response to certain agonists, young flowers pre-labelled with 32PO3-4 were treated with 10 ppm ethylene. All phospholipids incorporated the label, but no enhanced turnover of phosphatidylinositol was observed. Inositol 1,4,5-triphosphate did not release Ca2+ from preloaded microsomal vesicles at concentrations known to be effective in animal systems (i.e. < 5 μ M ) although release of Ca2+ was observed when a higher (20 μ M ) concentration was used.  相似文献   

9.
Treatment of homogenates and plasma membrane preparations from HeLa cells with phospholipase A2 (EC 3.1.1.4) caused a 50% increase in activity of membrane-associated alkaline phosphatase. Lysophosphatidylcholine, dispersed in 0.15 M KCl, affected alkaline phosphatase in a similar fashion by releasing the enzyme from particulate fractions into the incubation medium and by elevating its specific activity. Higher concentrations of lysophosphatidylcholine solubilized additional protein from particulate fractions but did not further increase the specific activity of the released alkaline phosphatase. Particulate fractions from HeLa cells were exposed to the effects of liposomes prepared from lysophosphatidylcholine and cholesterol. The ratio of particulate protein/lysophosphatidylcholine (by weight) required for optimal activation of alkaline phosphatase was one. Kinetic studies indicated that phospholipase A2 and lysophosphatidylcholine enhanced the apparent V of the enzyme but did not significantly alter its apparent Km. The increased release of alkaline phosphatase from the particulate matrix by lysophosphatidylcholine was confirmed by disc electrophoresis. The release of the enzyme by either phospholipase A2 or by lysophosphatidylcholine appeared to be followed by the formation of micelles that contained lysophosphatidylcholine. The new complexes had relatively less cholesterol and more lysophosphatidylcholine than the native membranes. The possibility that lysophosphatidylcholine formed a lipoprotein complex with the solubilized alkaline phosphatase was indicated by a break point in the Arrhenius plot which was evident only in the lysophosphatidylcholine-solubilized enzyme but could not be demonstrated in alkaline phosphatase that had been released with 0.15 M KCl alone.  相似文献   

10.
Rapid activation of phospholipase D (PLD) in response to cell stimulation was recently demonstrated in many systems, raising the hypothesis that PLD participates in transduction of extracellular signals across the plasma membrane. In the present study, we describe the identification of a neutral PLD activity in purified rat brain synaptic plasma membranes, and the in vitro conditions required to assay its catalytic activity with exogenous [3H]phosphatidylcholine as substrate. Production of [3H]phosphatidic acid, the natural lipid product of PLD and of [3H]phosphatidylethanol, catalyzed by PLD in the presence of ethanol via transphosphatidylation, were measured. The synaptic membrane PLD exhibited its highest activity at pH 7.2 and was thus defined as a neutral PLD. Enzyme activity was absolutely dependent on the presence of sodium oleate and was strongly activated by Mg2+ ions (at 1 mM). Ca2+ at concentrations up to 0.25 mM was as stimulatory as Mg2+, but at 2 mM it completely inhibited enzyme activity. Mg2+ extended the linear phase of PLD activity from 2 to 15 min, suggesting that it may stabilize the enzyme under our assay conditions. The production of [3H]phosphatidylethanol was a saturable function of ethanol concentration. Production of [3H] phosphatidic acid was inversely related to the concentration of ethanol and to the accumulation of phosphatidylethanol, indicating that the two phospholipids are indeed produced by the competing hydrolase and transferase activities of the same enzyme. beta,beta-Dimethylglutaric acid, utilized previously as a buffer in studies of rat brain PLD, inhibited enzyme activity at neutral pH but not at acidic pH. The properties of the neutral synaptic membrane PLD and its relationships with other in vitro, acid, and neutral PLD activities, as well as with the signal-dependent PLD detected in intact cells, are discussed.  相似文献   

11.
The lipid composition of plasma membranes and tonoplasts from etiolated mung bean hypocotyls was examined in detail. Phospholipids, sterols, and ceramide monohexoside(s) were the major lipid classes in both membranes. The content of phospholipids on a protein basis was higher in the tonoplast, but the content of total sterols was similar in both membranes. Accordingly, the sterol to phospholipid molar ratio in the plasma membrane was higher than that of the tonoplast. Phosphatidylethanolamine and phosphatidylcholine comprised the major phospholipids in both membranes. Phosphatidylinositol, phosphatidylserine, and phosphatidylglycerol were identified as minor phospholipid components. The content of phosphatidylinositol and phosphatidylglycerol was relatively high in the tonoplast, comprising 11 and 5% of the total phospholipids, respectively. Although special care was taken against the degradative action of phospholipase D and phosphatidic acid phosphatase during the isolation of these membranes, by adding EDTA, EGTA, KF, choline, and ethanolamine to the homogenizing medium, significant amounts of phosphatidic acid, about 15% of the total phospholipids, were detected in the plasma membrane. On the other hand, the content of phosphatidic acid in tonoplasts and other membrane fractions was very low. This fact may indicate that high levels of phosphatidic acid occur naturally in plasma membranes. Phosphatidylglycerol in both membranes and phosphatidylinositol in the tonoplast contained high levels of palmitic acid, which comprised more than 50% of the total fatty acids. Significant differences were observed in the sterol compositions of plasma membranes and tonoplasts. More than 90% of the sterols in the plasma membrane were unesterified, while the tonoplast was enriched in glycosylated sterols, especially acylated sterylglycosides. Ceramide monohexoside was found to be specifically located in these membranes, in particular, in the tonoplast, in which it comprised nearly 17% of the total lipids.  相似文献   

12.
Endogenous substrates (phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine) for the Ca2+-dependent base-exchange reaction were investigated using bovine retinal microsomes. The amounts of the three bases, serine, ethanolamine and choline, released from the membranes and the amount of phosphatidic acid generated in the membranes were measured in the presence of Ca2+ with or without exogenous bases. When the membranes were incubated with Ca2+ alone, the three bases were liberated into the water-soluble fractions accompanied by accumulation of phosphatidic acid, suggesting the presence of Ca2+-dependent phospholipase D-like activity. When an exogenous base was added to the reaction mixture, the liberation of the other two bases increased slightly and the formation of phosphatidic acid decreased markedly. The exogenous base also stimulated the liberation of the same base from prelabeled phospholipids. Accompanying these changes, the exogenous base was incorporated into the membrane phospholipid. With respect to pH profile, time course and metal requirements, both the base incorporation and phospholipase D-like activity were quite similar. The amount of base incorporated generally agreed with both the decreased amount of phosphatidic acid formed and the increased amount of base released. These results suggest that, beside the base-exchange reaction, phospholipase D-like activity plays an important role in Ca2+-dependent base incorporation into bovine retinal membranes.  相似文献   

13.
We purified phosphatidic acid phosphatase (EC 3.1.3.4) 2300-fold from porcine thymus membranes. The enzyme was solubilized with beta-octyl glucoside and Triton X-100 and fractionated with ammonium sulfate. The purification was then achieved by chromatography in the presence of Triton X-100 with Sephacryl S-300, hydroxylapatite, heparin-Sepharose, and Affi-Gel Blue. The final enzyme preparation gave a single band of M(r) = 83,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing and nonreducing conditions. The native enzyme, on the other hand, was eluted at M(r) = 218,000 in gel filtration chromatography with Superose 12 in the presence of Triton X-100. The enzyme was judged to be specific to phosphatidic acid, since excess amounts of dicetylphosphate or lysophosphatidic acid did not inhibit the enzyme activity. In this respect, the enzyme was inhibited by 1,2-diacylglycerol but not by 1- or 2-monoacylglycerol and triacylglycerol. The enzyme required Triton X-100 or deoxycholate for its activity. Although the enzyme appeared to be an integral membrane protein, we could not detect its phospholipid dependencies. The activity was independent of Mg2+, and other cations were strongly inhibitory. The specific enzyme activity was 15 mumol/min/mg of protein when assayed using phosphatidic acid as Triton X-100 mixed micelles. The Km for the surface concentration of phosphatidic acid was 0.30 mol%. The enzyme was inhibited by sphingosine and chloropromazine, and less potently, by propranolol and NaF. The enzyme was insensitive to thio-reactive reagents like N-ethylmaleimide.  相似文献   

14.
The effect of different salinity level and synthetic compounds treatment on phospholipase D activity in the root tissue of maize seedlings and the content of phosphatidic acid in plasmatic membrane has been investigated. The salt exposition to 0.05 M NaCl raised the activity of phospholipase D and the content of phosphatidic acid in the plasma membrane. The salt exposition to 0.1 M NaCl lowered the activity of phospholipase D, but raised the content of phosphatidic acid in the plasma membrane. The synthetic compounds treatment increased the activity of phospholipase D. It was shown that methyure treatment decreased the content of phosphatidic acid in the plasma membrane. The ivin treatment had the opposite effect.  相似文献   

15.
Brush-border membranes were isolated from rabbit small intestine by procedures involving precipitation of undesired membranes with either 10 mM MgCl2 or 10 mM CaCl2. The membranes were compared on the basis of marker enzyme content and lipid composition. Ca2+-prepared membranes displayed a greater enrichment of alkaline phosphatase and sucrase activity compared to homogenate than did the Mg2+-prepared membranes. The former also displayed an impoverishment of (Na+ + K+)-ATPase activity, the specific activity of which increased several-fold in Mg2+-prepared membranes. Membranes prepared with Ca2+ were characterized by a lower phosphoacylglycerol-protein ratio and a higher phosphatidylethanolamine-phosphatidylcholine ratio. Although lysophosphoacylglycerols accounted for about 6% of the total phospholipids in these membranes compared to 2% in Mg2+-prepared membranes, the free fatty acid content was similar in both types of membranes. It was concluded that Ca2+ prepared membranes were less contaminated by basolateral membranes than were Mg2+-prepared membranes and the use of Ca2+ did not notably enhance degradation of endogenous lipids by brush-border membrane phospholipase A.  相似文献   

16.
《Phytochemistry》1987,26(7):1903-1908
Fractionation of [Me-14C]choline-labelled wheat aleurone tissue in the absence of phospholipase inhibitors resulted in a 60% loss of label from phosphatidylcholine and even larger losses of NADH-cytochrome c reductase activity from microsomal fractions. Several putative inhibitors of phospholipase D were tested for their ability to protect the membranes during fractionation. The addition of choline and O-phosphorylcholine, together with glycerol-1-phosphate to inhibit any phosphatidic acid phosphatase activity, proved to be the best protectants. In tissue from freshly imbibed seeds, however, the addition of p-chloromercuribenzoate to a cocktail of inhibitors was necessary for the best recovery of radiolabelled membranes. Effects of the inhibitors on phospholipase D activity in cell free extracts were studied in an attempt to confirm the enzyme as the cause of membrane damage.  相似文献   

17.
Arachidonoyl-hydrolyzing phospholipase A2 plays a central role in providing substrate for the synthesis of the potent lipid mediators of inflammation, the eicosanoids, and platelet-activating factor. Although Ca2+ is required for arachidonic acid release in vivo and most phospholipase A2 enzymes require Ca2+ for activity in vitro, the role of Ca2+ in phospholipase A2 activation is not understood. We have found that an arachidonoyl-hydrolyzing phospholipase A2 from the macrophage-like cell line, RAW 264.7, exhibits Ca2(+)-dependent association with membrane. The intracellular distribution of the enzyme was studied as a function of the Ca2+ concentration present in homogenization buffer. The enzyme was found almost completely in the 100,000 x g soluble fraction when cells were homogenized in the presence of Ca2+ chelators and there was a slight decrease in soluble fraction activity when cells were homogenized at the level of Ca2+ in an unstimulated cell (80 nM). When cells were homogenized at Ca2+ concentrations expected in stimulated cells (230-450 nM), 60-70% of the phospholipase A2 activity was lost from the soluble fraction and became associated with the particulate fraction in a manner that was partly reversible with EGTA. Membrane-associated phospholipase A2 activity was demonstrated by [3H]arachidonic acid release both from exogenous liposomes and from radiolabeled membranes. With radiolabeled particulate fraction as substrate, this enzyme hydrolyzed arachidonic acid but not oleic acid from membrane phospholipid, and [3H]arachidonic acid was derived from phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol/phosphatidylserine. We suggest a mechanism in which the activity of phospholipase A2 is regulated by Ca2+: in an unstimulated cell phospholipase A2 is found in the cytosol; upon receptor ligation the cytosolic Ca2+ concentration increases, and the enzyme becomes membrane-associated which facilitates arachidonic acid hydrolysis.  相似文献   

18.
The second enzyme of phosphatidic acid synthesis from glycerol-3-phosphate, 1-acylglycerophospate acyltransferase, was localized to the inner envelope membrane of pea chloroplasts. The activity of this enzyme was measured by both a coupled enzyme assay and a direct enzyme assay. Using the coupled enzyme assay, phosphatidic acid phosphatase was also localized to the inner envelope membrane, although this enzyme has very low activity in pea chloroplasts. The addition of UDP-galactose to unfractionated pea chloroplast envelope preparations did not result in significant conversion of newly synthesized diacylglycerol to monogalactosyldiacylglycerol. Thus, the envelope synthesized phosphatidic acid may not be involved in galactolipid synthesis in pea chloroplasts.  相似文献   

19.
Plasma membranes were isolated after binding liver and hepatoma cells to polylysine-coated polyacrylamide beads, and the effect of concanavalin A on the membrane-bound Mg2+ -ATPase and the Mg2+ -ATPase solubilized by octaethylene glycol monododecyl ether (C12E8) was studied. In the experiment of membrane-bound Mg2+ -ATPase, plasma membranes were pretreated with Concanavalin A and the activity was assayed. Concanavalin A stimulated the activity of both liver and hepatoma enzymes assayed above 20 degrees C. Concanavalin A abolished the negative temperature dependency characteristic of liver plasma membrane Mg2+ -ATPase. On the other hand, Concanavalin A prevented the rapid inactivation due to storage at -20 degrees C, which was characteristic of hepatoma plasma membrane Mg2+ -ATPase. With solubilized Mg2+ -ATPase from liver plasma membranes, the negative temperature dependency was not observed. Concanavalin A, which was added to the assay medium, stimulated the activity of the enzyme solubilized in C12E8 at a high ionic strength. However, Concanavalin A failed to show any effect on the enzyme solubilized in C12E8 at a low ionic strength. With solubilized Mg2+ -ATPase from hepatoma plasma membranes, Concanavalin A could not prevent the inactivation of the enzyme during incubation at -20 degrees C.  相似文献   

20.
Phosphatidylinositol anchors human placental-type alkaline phosphatase (PLAP) to both syncytiotrophoblast and tumour cell plasma membranes. PLAP activity was released from isolated human placental syncytiotrophoblast plasma membranes and the surface of tumour cells with a phospholipase C from Bacillus cereus. This was a specific event, not the result of proteolysis or membrane perturbation, but the action of a phosphatidylinositol-specific phospholipase C in the preparation. Soluble PLAP, released with B. cereus phospholipase C and purified by immunoaffinity chromatography, ran on SDS-PAGE as a 66-kDa band. This corresponded to intact PLAP molecules. The protease bromelain cleaved lower-molecular-mass PLAP (64 kDa) from the membranes. Flow cytometry demonstrated that B. cereus phospholipase C released human tumour cell membrane PLAP in preference to other cell-surface molecules. This was in contrast to the non-specific proteolytic action of bromelain or Clostridium perfringens phospholipase C, which had no effect on membrane PLAP expression. Radiolabelling of tumour cells with fatty acids indicated PLAP to be labelled with both [3H]myristic and [3H]palmitic acid. This fatty-acid--PLAP bond was sensitive to pH 10 hydroxylamine treatment indicating an O-ester linkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号