首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Many external and internal validity measures have been proposed in order to estimate the number of clusters in gene expression data but as a rule they do not consider the analysis of the stability of the groupings produced by a clustering algorithm. Based on the approach assessing the predictive power or stability of a partitioning, we propose the new measure of cluster validation and the selection procedure to determine the suitable number of clusters. The validity measure is based on the estimation of the "clearness" of the consensus matrix, which is the result of a resampling clustering scheme or consensus clustering. According to the proposed selection procedure the stable clustering result is determined with the reference to the validity measure for the null hypothesis encoding for the absence of clusters. The final number of clusters is selected by analyzing the distance between the validity plots for initial and permutated data sets. We applied the selection procedure to estimate the clustering results on several datasets. As a result the proposed procedure produced an accurate and robust estimate of the number of clusters, which are in agreement with the biological knowledge and gold standards of cluster quality.  相似文献   

3.
MOTIVATION: The increasing use of DNA microarray-based tumor gene expression profiles for cancer diagnosis requires mathematical methods with high accuracy for solving clustering, feature selection and classification problems of gene expression data. RESULTS: New algorithms are developed for solving clustering, feature selection and classification problems of gene expression data. The clustering algorithm is based on optimization techniques and allows the calculation of clusters step-by-step. This approach allows us to find as many clusters as a data set contains with respect to some tolerance. Feature selection is crucial for a gene expression database. Our feature selection algorithm is based on calculating overlaps of different genes. The database used, contains over 16 000 genes and this number is considerably reduced by feature selection. We propose a classification algorithm where each tissue sample is considered as the center of a cluster which is a ball. The results of numerical experiments confirm that the classification algorithm in combination with the feature selection algorithm perform slightly better than the published results for multi-class classifiers based on support vector machines for this data set. AVAILABILITY: Available on request from the authors.  相似文献   

4.
This paper presents an attribute clustering method which is able to group genes based on their interdependence so as to mine meaningful patterns from the gene expression data. It can be used for gene grouping, selection, and classification. The partitioning of a relational table into attribute subgroups allows a small number of attributes within or across the groups to be selected for analysis. By clustering attributes, the search dimension of a data mining algorithm is reduced. The reduction of search dimension is especially important to data mining in gene expression data because such data typically consist of a huge number of genes (attributes) and a small number of gene expression profiles (tuples). Most data mining algorithms are typically developed and optimized to scale to the number of tuples instead of the number of attributes. The situation becomes even worse when the number of attributes overwhelms the number of tuples, in which case, the likelihood of reporting patterns that are actually irrelevant due to chances becomes rather high. It is for the aforementioned reasons that gene grouping and selection are important preprocessing steps for many data mining algorithms to be effective when applied to gene expression data. This paper defines the problem of attribute clustering and introduces a methodology to solving it. Our proposed method groups interdependent attributes into clusters by optimizing a criterion function derived from an information measure that reflects the interdependence between attributes. By applying our algorithm to gene expression data, meaningful clusters of genes are discovered. The grouping of genes based on attribute interdependence within group helps to capture different aspects of gene association patterns in each group. Significant genes selected from each group then contain useful information for gene expression classification and identification. To evaluate the performance of the proposed approach, we applied it to two well-known gene expression data sets and compared our results with those obtained by other methods. Our experiments show that the proposed method is able to find the meaningful clusters of genes. By selecting a subset of genes which have high multiple-interdependence with others within clusters, significant classification information can be obtained. Thus, a small pool of selected genes can be used to build classifiers with very high classification rate. From the pool, gene expressions of different categories can be identified.  相似文献   

5.
Model-based clustering is a popular tool for summarizing high-dimensional data. With the number of high-throughput large-scale gene expression studies still on the rise, the need for effective data- summarizing tools has never been greater. By grouping genes according to a common experimental expression profile, we may gain new insight into the biological pathways that steer biological processes of interest. Clustering of gene profiles can also assist in assigning functions to genes that have not yet been functionally annotated. In this paper, we propose 2 model selection procedures for model-based clustering. Model selection in model-based clustering has to date focused on the identification of data dimensions that are relevant for clustering. However, in more complex data structures, with multiple experimental factors, such an approach does not provide easily interpreted clustering outcomes. We propose a mixture model with multiple levels, , that provides sparse representations both "within" and "between" cluster profiles. We explore various flexible "within-cluster" parameterizations and discuss how efficient parameterizations can greatly enhance the objective interpretability of the generated clusters. Moreover, we allow for a sparse "between-cluster" representation with a different number of clusters at different levels of an experimental factor of interest. This enhances interpretability of clusters generated in multiple-factor contexts. Interpretable cluster profiles can assist in detecting biologically relevant groups of genes that may be missed with less efficient parameterizations. We use our multilevel mixture model to mine a proliferating cell line expression data set for annotational context and regulatory motifs. We also investigate the performance of the multilevel clustering approach on several simulated data sets.  相似文献   

6.
Clustering analysis is an important tool in studying gene expression data. The Bayesian hierarchical clustering (BHC) algorithm can automatically infer the number of clusters and uses Bayesian model selection to improve clustering quality. In this paper, we present an extension of the BHC algorithm. Our Gaussian BHC (GBHC) algorithm represents data as a mixture of Gaussian distributions. It uses normal-gamma distribution as a conjugate prior on the mean and precision of each of the Gaussian components. We tested GBHC over 11 cancer and 3 synthetic datasets. The results on cancer datasets show that in sample clustering, GBHC on average produces a clustering partition that is more concordant with the ground truth than those obtained from other commonly used algorithms. Furthermore, GBHC frequently infers the number of clusters that is often close to the ground truth. In gene clustering, GBHC also produces a clustering partition that is more biologically plausible than several other state-of-the-art methods. This suggests GBHC as an alternative tool for studying gene expression data.The implementation of GBHC is available at https://sites.google.com/site/gaussianbhc/  相似文献   

7.
MOTIVATION: The biologic significance of results obtained through cluster analyses of gene expression data generated in microarray experiments have been demonstrated in many studies. In this article we focus on the development of a clustering procedure based on the concept of Bayesian model-averaging and a precise statistical model of expression data. RESULTS: We developed a clustering procedure based on the Bayesian infinite mixture model and applied it to clustering gene expression profiles. Clusters of genes with similar expression patterns are identified from the posterior distribution of clusterings defined implicitly by the stochastic data-generation model. The posterior distribution of clusterings is estimated by a Gibbs sampler. We summarized the posterior distribution of clusterings by calculating posterior pairwise probabilities of co-expression and used the complete linkage principle to create clusters. This approach has several advantages over usual clustering procedures. The analysis allows for incorporation of a reasonable probabilistic model for generating data. The method does not require specifying the number of clusters and resulting optimal clustering is obtained by averaging over models with all possible numbers of clusters. Expression profiles that are not similar to any other profile are automatically detected, the method incorporates experimental replicates, and it can be extended to accommodate missing data. This approach represents a qualitative shift in the model-based cluster analysis of expression data because it allows for incorporation of uncertainties involved in the model selection in the final assessment of confidence in similarities of expression profiles. We also demonstrated the importance of incorporating the information on experimental variability into the clustering model. AVAILABILITY: The MS Windows(TM) based program implementing the Gibbs sampler and supplemental material is available at http://homepages.uc.edu/~medvedm/BioinformaticsSupplement.htm CONTACT: medvedm@email.uc.edu  相似文献   

8.
MOTIVATION: Clustering is one of the most widely used methods in unsupervised gene expression data analysis. The use of different clustering algorithms or different parameters often produces rather different results on the same data. Biological interpretation of multiple clustering results requires understanding how different clusters relate to each other. It is particularly non-trivial to compare the results of a hierarchical and a flat, e.g. k-means, clustering. RESULTS: We present a new method for comparing and visualizing relationships between different clustering results, either flat versus flat, or flat versus hierarchical. When comparing a flat clustering to a hierarchical clustering, the algorithm cuts different branches in the hierarchical tree at different levels to optimize the correspondence between the clusters. The optimization function is based on graph layout aesthetics or on mutual information. The clusters are displayed using a bipartite graph where the edges are weighted proportionally to the number of common elements in the respective clusters and the weighted number of crossings is minimized. The performance of the algorithm is tested using simulated and real gene expression data. The algorithm is implemented in the online gene expression data analysis tool Expression Profiler. AVAILABILITY: http://www.ebi.ac.uk/expressionprofiler  相似文献   

9.
A multi-clustering fusion method is presented based on combining several runs of a clustering algorithm resulting in a common partition. More specifically, the results of several independent runs of the same clustering algorithm are appropriately combined to obtain a distinct partition of the data which is not affected by initialization and overcomes the instabilities of clustering methods. Subsequently, a fusion procedure is applied to the clusters generated during the previous phase to determine the optimal number of clusters in the data set according to some predefined criteria.  相似文献   

10.
Adaptive quality-based clustering of gene expression profiles   总被引:17,自引:0,他引:17  
MOTIVATION: Microarray experiments generate a considerable amount of data, which analyzed properly help us gain a huge amount of biologically relevant information about the global cellular behaviour. Clustering (grouping genes with similar expression profiles) is one of the first steps in data analysis of high-throughput expression measurements. A number of clustering algorithms have proved useful to make sense of such data. These classical algorithms, though useful, suffer from several drawbacks (e.g. they require the predefinition of arbitrary parameters like the number of clusters; they force every gene into a cluster despite a low correlation with other cluster members). In the following we describe a novel adaptive quality-based clustering algorithm that tackles some of these drawbacks. RESULTS: We propose a heuristic iterative two-step algorithm: First, we find in the high-dimensional representation of the data a sphere where the "density" of expression profiles is locally maximal (based on a preliminary estimate of the radius of the cluster-quality-based approach). In a second step, we derive an optimal radius of the cluster (adaptive approach) so that only the significantly coexpressed genes are included in the cluster. This estimation is achieved by fitting a model to the data using an EM-algorithm. By inferring the radius from the data itself, the biologist is freed from finding an optimal value for this radius by trial-and-error. The computational complexity of this method is approximately linear in the number of gene expression profiles in the data set. Finally, our method is successfully validated using existing data sets. AVAILABILITY: http://www.esat.kuleuven.ac.be/~thijs/Work/Clustering.html  相似文献   

11.
Bondell HD  Reich BJ 《Biometrics》2008,64(1):115-123
Summary .   Variable selection can be challenging, particularly in situations with a large number of predictors with possibly high correlations, such as gene expression data. In this article, a new method called the OSCAR (octagonal shrinkage and clustering algorithm for regression) is proposed to simultaneously select variables while grouping them into predictive clusters. In addition to improving prediction accuracy and interpretation, these resulting groups can then be investigated further to discover what contributes to the group having a similar behavior. The technique is based on penalized least squares with a geometrically intuitive penalty function that shrinks some coefficients to exactly zero. Additionally, this penalty yields exact equality of some coefficients, encouraging correlated predictors that have a similar effect on the response to form predictive clusters represented by a single coefficient. The proposed procedure is shown to compare favorably to the existing shrinkage and variable selection techniques in terms of both prediction error and model complexity, while yielding the additional grouping information.  相似文献   

12.
K-ary clustering with optimal leaf ordering for gene expression data   总被引:2,自引:0,他引:2  
MOTIVATION: A major challenge in gene expression analysis is effective data organization and visualization. One of the most popular tools for this task is hierarchical clustering. Hierarchical clustering allows a user to view relationships in scales ranging from single genes to large sets of genes, while at the same time providing a global view of the expression data. However, hierarchical clustering is very sensitive to noise, it usually lacks of a method to actually identify distinct clusters, and produces a large number of possible leaf orderings of the hierarchical clustering tree. In this paper we propose a new hierarchical clustering algorithm which reduces susceptibility to noise, permits up to k siblings to be directly related, and provides a single optimal order for the resulting tree. RESULTS: We present an algorithm that efficiently constructs a k-ary tree, where each node can have up to k children, and then optimally orders the leaves of that tree. By combining k clusters at each step our algorithm becomes more robust against noise and missing values. By optimally ordering the leaves of the resulting tree we maintain the pairwise relationships that appear in the original method, without sacrificing the robustness. Our k-ary construction algorithm runs in O(n(3)) regardless of k and our ordering algorithm runs in O(4(k)n(3)). We present several examples that show that our k-ary clustering algorithm achieves results that are superior to the binary tree results in both global presentation and cluster identification. AVAILABILITY: We have implemented the above algorithms in C++ on the Linux operating system.  相似文献   

13.
MOTIVATION: Large scale gene expression data are often analysed by clustering genes based on gene expression data alone, though a priori knowledge in the form of biological networks is available. The use of this additional information promises to improve exploratory analysis considerably. RESULTS: We propose constructing a distance function which combines information from expression data and biological networks. Based on this function, we compute a joint clustering of genes and vertices of the network. This general approach is elaborated for metabolic networks. We define a graph distance function on such networks and combine it with a correlation-based distance function for gene expression measurements. A hierarchical clustering and an associated statistical measure is computed to arrive at a reasonable number of clusters. Our method is validated using expression data of the yeast diauxic shift. The resulting clusters are easily interpretable in terms of the biochemical network and the gene expression data and suggest that our method is able to automatically identify processes that are relevant under the measured conditions.  相似文献   

14.
MOTIVATION: The increasing use of microarray technologies is generating large amounts of data that must be processed in order to extract useful and rational fundamental patterns of gene expression. Hierarchical clustering technology is one method used to analyze gene expression data, but traditional hierarchical clustering algorithms suffer from several drawbacks (e.g. fixed topology structure; mis-clustered data which cannot be reevaluated). In this paper, we introduce a new hierarchical clustering algorithm that overcomes some of these drawbacks. RESULT: We propose a new tree-structure self-organizing neural network, called dynamically growing self-organizing tree (DGSOT) algorithm for hierarchical clustering. The DGSOT constructs a hierarchy from top to bottom by division. At each hierarchical level, the DGSOT optimizes the number of clusters, from which the proper hierarchical structure of the underlying dataset can be found. In addition, we propose a new cluster validation criterion based on the geometric property of the Voronoi partition of the dataset in order to find the proper number of clusters at each hierarchical level. This criterion uses the Minimum Spanning Tree (MST) concept of graph theory and is computationally inexpensive for large datasets. A K-level up distribution (KLD) mechanism, which increases the scope of data distribution in the hierarchy construction, was used to improve the clustering accuracy. The KLD mechanism allows the data misclustered in the early stages to be reevaluated at a later stage and increases the accuracy of the final clustering result. The clustering result of the DGSOT is easily displayed as a dendrogram for visualization. Based on a yeast cell cycle microarray expression dataset, we found that our algorithm extracts gene expression patterns at different levels. Furthermore, the biological functionality enrichment in the clusters is considerably high and the hierarchical structure of the clusters is more reasonable. AVAILABILITY: DGSOT is available upon request from the authors.  相似文献   

15.
Model-based clustering and data transformations for gene expression data.   总被引:20,自引:0,他引:20  
MOTIVATION: Clustering is a useful exploratory technique for the analysis of gene expression data. Many different heuristic clustering algorithms have been proposed in this context. Clustering algorithms based on probability models offer a principled alternative to heuristic algorithms. In particular, model-based clustering assumes that the data is generated by a finite mixture of underlying probability distributions such as multivariate normal distributions. The issues of selecting a 'good' clustering method and determining the 'correct' number of clusters are reduced to model selection problems in the probability framework. Gaussian mixture models have been shown to be a powerful tool for clustering in many applications. RESULTS: We benchmarked the performance of model-based clustering on several synthetic and real gene expression data sets for which external evaluation criteria were available. The model-based approach has superior performance on our synthetic data sets, consistently selecting the correct model and the number of clusters. On real expression data, the model-based approach produced clusters of quality comparable to a leading heuristic clustering algorithm, but with the key advantage of suggesting the number of clusters and an appropriate model. We also explored the validity of the Gaussian mixture assumption on different transformations of real data. We also assessed the degree to which these real gene expression data sets fit multivariate Gaussian distributions both before and after subjecting them to commonly used data transformations. Suitably chosen transformations seem to result in reasonable fits. AVAILABILITY: MCLUST is available at http://www.stat.washington.edu/fraley/mclust. The software for the diagonal model is under development. CONTACT: kayee@cs.washington.edu. SUPPLEMENTARY INFORMATION: http://www.cs.washington.edu/homes/kayee/model.  相似文献   

16.
Cancer is a complex genetic disease, resulting from defects of multiple genes. Development of microarray techniques makes it possible to survey the whole genome and detect genes that have influential impacts on the progression of cancer. Statistical analysis of cancer microarray data is challenging because of the high dimensionality and cluster nature of gene expressions. Here, clusters are composed of genes with coordinated pathological functions and/or correlated expressions. In this article, we consider cancer studies where censored survival endpoint is measured along with microarray gene expressions. We propose a hybrid clustering approach, which uses both pathological pathway information retrieved from KEGG and statistical correlations of gene expressions, to construct gene clusters. Cancer survival time is modeled as a linear function of gene expressions. We adopt the clustering threshold gradient directed regularization (CTGDR) method for simultaneous gene cluster selection, within-cluster gene selection, and predictive model building. Analysis of two lymphoma studies shows that the proposed approach - which is composed of the hybrid gene clustering, linear regression model for survival, and clustering regularized estimation with CTGDR - can effectively identify gene clusters and genes within selected clusters that have satisfactory predictive power for censored cancer survival outcomes.  相似文献   

17.

Background

Clustering is a widely used technique for analysis of gene expression data. Most clustering methods group genes based on the distances, while few methods group genes according to the similarities of the distributions of the gene expression levels. Furthermore, as the biological annotation resources accumulated, an increasing number of genes have been annotated into functional categories. As a result, evaluating the performance of clustering methods in terms of the functional consistency of the resulting clusters is of great interest.

Results

In this paper, we proposed the WDCM (Weibull Distribution-based Clustering Method), a robust approach for clustering gene expression data, in which the gene expressions of individual genes are considered as the random variables following unique Weibull distributions. Our WDCM is based on the concept that the genes with similar expression profiles have similar distribution parameters, and thus the genes are clustered via the Weibull distribution parameters. We used the WDCM to cluster three cancer gene expression data sets from the lung cancer, B-cell follicular lymphoma and bladder carcinoma and obtained well-clustered results. We compared the performance of WDCM with k-means and Self Organizing Map (SOM) using functional annotation information given by the Gene Ontology (GO). The results showed that the functional annotation ratios of WDCM are higher than those of the other methods. We also utilized the external measure Adjusted Rand Index to validate the performance of the WDCM. The comparative results demonstrate that the WDCM provides the better clustering performance compared to k-means and SOM algorithms. The merit of the proposed WDCM is that it can be applied to cluster incomplete gene expression data without imputing the missing values. Moreover, the robustness of WDCM is also evaluated on the incomplete data sets.

Conclusions

The results demonstrate that our WDCM produces clusters with more consistent functional annotations than the other methods. The WDCM is also verified to be robust and is capable of clustering gene expression data containing a small quantity of missing values.  相似文献   

18.
Ji X  Li-Ling J  Sun Z 《FEBS letters》2003,542(1-3):125-131
In this work we have developed a new framework for microarray gene expression data analysis. This framework is based on hidden Markov models. We have benchmarked the performance of this probability model-based clustering algorithm on several gene expression datasets for which external evaluation criteria were available. The results showed that this approach could produce clusters of quality comparable to two prevalent clustering algorithms, but with the major advantage of determining the number of clusters. We have also applied this algorithm to analyze published data of yeast cell cycle gene expression and found it able to successfully dig out biologically meaningful gene groups. In addition, this algorithm can also find correlation between different functional groups and distinguish between function genes and regulation genes, which is helpful to construct a network describing particular biological associations. Currently, this method is limited to time series data. Supplementary materials are available at http://www.bioinfo.tsinghua.edu.cn/~rich/hmmgep_supp/.  相似文献   

19.
20.
Validating clustering for gene expression data   总被引:24,自引:0,他引:24  
MOTIVATION: Many clustering algorithms have been proposed for the analysis of gene expression data, but little guidance is available to help choose among them. We provide a systematic framework for assessing the results of clustering algorithms. Clustering algorithms attempt to partition the genes into groups exhibiting similar patterns of variation in expression level. Our methodology is to apply a clustering algorithm to the data from all but one experimental condition. The remaining condition is used to assess the predictive power of the resulting clusters-meaningful clusters should exhibit less variation in the remaining condition than clusters formed by chance. RESULTS: We successfully applied our methodology to compare six clustering algorithms on four gene expression data sets. We found our quantitative measures of cluster quality to be positively correlated with external standards of cluster quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号