首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of myo-inositol 1,4,6-trisphosphate from myo-inositol is described; this novel trisphosphate is a potent Ca2+-mobilising agonist at the Ins(1,4,5)P3 receptor and is derived from structure-activity considerations of myo-inositol 1,3,4,6-tetrakisphosphate.  相似文献   

2.
L-chiro-inositol 1,4,6-trisphosphate and trisphosphorothioate have been synthesized from L-quebrachitol; the trisphosphorothiate is the most potent inhibitor of Ins(1,4,5)P3 5-phosphatase yet discovered.  相似文献   

3.
The ability of two fluoro-analogues of D-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) to mobilize intracellular Ca2+ stores in SH-SY5Y neuroblastoma cells has been investigated. DL-2-deoxy-2-fluoro-scyllo-Ins(1,4,5)P3 (2F-Ins(1,4,5)P3) and DL-2,2-difluoro-2-deoxy-myo-Ins(1,4,5)P3 (2,2-F2-Ins(1,4,5)P3) were full agonists (EC50s 0.77 and 0.41 microM respectively) and slightly less potent than D-Ins(1,4,5)P3 (EC50 0.13 microM), indicating that the axial 2-hydroxyl group of Ins(1,4,5)P3 is relatively unimportant in receptor binding and stimulation of Ca2+ release. Both analogues mobilized Ca2+ with broadly similar kinetics and were substrates for Ins(1,4,5)P3 3-kinase but, qualitatively, were slightly poorer than Ins(1,4,5)P3. 2F-Ins(1,4,5)P3 was a weak substrate for Ins(1,4,5)P3 5-phosphatase but 2,2-F2-Ins(1,4,5)P3 was apparently not hydrolysed by this enzyme, although it inhibited its activity potently (Ki = 26 microM).  相似文献   

4.
The ability of two enantiomeric fluoro-analogues of D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] to mobilize intracellular Ca2+ stores in SH-SY5Y neuroblastoma cells has been investigated. (-)-D-2,2-difluoro-2-deoxy-myo-Ins(1,4,5)P3 [D-2,2-F2-Ins(1,4,5)P3] was a full agonist [EC50 0.21 microM] and slightly less potent than D-Ins(1,4,5)P3 [EC50 0.13 microM]. (+)-L-2,2-F2Ins(1,4,5)P3 was a very poor agonist, confirming the stereospecificity of the Ins(1,4,5)P3 receptor. D-2,2-F2-Ins(1,4,5)P3 mobilized Ca2+ with broadly similar kinetics to Ins(1,4,5)P3 and was a substrate for Ins(1,4,5)P3 3-kinase inhibiting Ins(1,4,5)P3 phosphorylation (apparent Ki = 10.2 microM) but was recognised less well than Ins(1,4,5)P3. L-2,2-F2-Ins(1,4,5)P3 was a potent competitive inhibitor of 3-kinase (Ki = 11.9 microM). Whereas D-2,2-F2-Ins(1,4,5)P3 was a good substrate for Ins(1,4,5)P3 5-phosphatase, L-2,2-F2Ins(1,4,5)P3 was a relatively potent inhibitor (Ki = 19.0 microM).  相似文献   

5.
myo-Inositol 1,4,5-trisphosphate is an intracellular second messenger generated from the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C. In the present study, we have used the abilities of inositol 1,4,5-trisphosphate to inhibit inositol 1,4,5-tris[32P]phosphate binding and to stimulate release of sequestered stores of 45Ca2+ to assay the mass of inositol 1,4,5-trisphosphate in extracts derived from [3H]inositol-prelabeled chemoattractant-stimulated neutrophils. These assays are specific for inositol 1,4,5-trisphosphate since the relative capacity of the extracts to compete with inositol 1,4,5-tris[32P]phosphate binding and to release 45Ca2+ correlated well with the [3H]inositol 1,4,5-trisphosphate content of the extract as determined by high pressure liquid chromatography. No correlation of these activities was observed with the content in the extract of either [3H]inositol 1,3,4-trisphosphate or [3H]inositol 1,3,4,5-tetrakisphosphate, whose formation exhibited kinetics distinct from [3H]inositol 1,4,5-trisphosphate. Thus, within 10 s of stimulation with 10 nM formyl-methionyl-leucyl-phenylalanine, the inositol 1,4,5-trisphosphate content of the extract increased from 0.05 to 0.55 pmol/10(6) cells, equivalent to a change in intracellular concentration from 100 nM to 1.1 microM. These studies demonstrate that neutrophils produce sufficient quantities of inositol 1,4,5-trisphosphate to mobilize Ca2+ from intracellular stores.  相似文献   

6.
Effects of inositol-1,4,5-trisphosphate injections into salamander rods   总被引:1,自引:0,他引:1  
Solitary rods were isolated by trituration of salamander (Ambystoma tigrinum) retinas. One barrel of an intracellular, double-barreled micropipette was used to record membrane voltage; the other barrel was used to pressure-inject inositol-1,4,5-trisphosphate. The injection of inositol-1,4,5 -trisphosphate induced a reversible hyperpolarization of the rod membrane. Injections of inositol-1,4,5-trisphosphate decreased the size of receptor potentials induced by dim lights. Conversely, light decreased the responses of the rod to injections of inositol-1,4,5-trisphosphate. These results suggest that inositol-1,4,5-trisphosphate might be involved in the modulation of rod membrane voltage during phototransduction.  相似文献   

7.
Metabolism of inositol 1,4,5-trisphosphate was investigated in permeabilized guinea-pig hepatocytes. The conversion of [3H]inositol 1,4,5-trisphosphate to a more polar 3H-labelled compound occurred rapidly and was detected as early as 5 s. This material co-eluted from h.p.l.c. with inositol 1,3,4,5 tetrakis[32P]phosphate and is presumably an inositol tetrakisphosphate. A significant increase in the 3H-labelled material co-eluting from h.p.l.c. with inositol 1,3,4-trisphosphate occurred only after a definite lag period. Incubation of permeabilized hepatocytes with inositol 1,3,4,5-tetrakis[32P]phosphate resulted in the formation of 32P-labelled material that co-eluted with inositol 1,3,4-trisphosphate; no inositol 1,4,5-tris[32P]phosphate was produced, suggesting the action of a 5-phosphomonoesterase. The half-time of hydrolysis of inositol 1,3,4,5-tetrakis[32P]phosphate of approx. 1 min was increased to 3 min by 2,3-bisphosphoglyceric acid. Similarly, the rate of production of material tentatively designed as inositol 1,3,4-tris[32P]phosphate from the tetrakisphosphate was reduced by 10 mM-2,3-bisphosphoglyceric acid. In the absence of ATP there was no conversion of [3H]inositol 1,4,5-trisphosphate to [3H]inositol tetrakisphosphate or to [3H]inositol 1,3,4-trisphosphate, which suggests that the 1,3,4 isomer does not result from isomerization of inositol 1,4,5-trisphosphate. The results of this study suggest that the origin of the 1,3,4 isomer of inositol trisphosphate in isolated hepatocytes is inositol 1,3,4,5-tetrakisphosphate and that inositol 1,4,5-trisphosphate is rapidly converted to this tetrakisphosphate. The ability of 2,3-bisphosphoglyceric acid, an inhibitor of 5-phosphomonoesterase of red blood cell membrane, to inhibit the breakdown of the tetrakisphosphate suggests that the enzyme which removes the 5-phosphate from inositol 1,4,5-trisphosphate may also act to convert the tetrakisphosphate to inositol 1,3,4-trisphosphate. It is not known if the role of inositol 1,4,5-trisphosphate kinase is to inactivate inositol 1,4,5-trisphosphate or whether the tetrakisphosphate product may have a messenger function in the cell.  相似文献   

8.
The inositol trisphosphate liberated on stimulation of guinea-pig hepatocytes, pancreatic acinar cells and dimethyl sulphoxide-differentiated human myelomonocytic HL-60 leukaemia cells is composed of two isomers, the 1,4,5-trisphosphate and the 1,3,4-trisphosphate. Inositol 1,4,5-trisphosphate was released rapidly, with no measurable latency on hormone stimulation, and, consistent with its proposed role as an intracellular messenger for Ca2+ mobilization, there was good temporal correlation between its formation and Ca2+-mediated events in these tissues. There was a definite latency before an increase in the formation of inositol 1,3,4-trisphosphate could be detected. In all of these tissues, however, it formed a substantial proportion of the total inositol trisphosphate by 1 min of stimulation. In guinea-pig hepatocytes, where inositol trisphosphate increases for at least 30 min after hormone application, inositol 1,3,4-trisphosphate made up about 90% of the total inositol trisphosphate by 5-10 min. In pancreatic acinar cells, pretreatment with 20 mM-Li+ caused an increase in hormone-induced inositol trisphosphate accumulation. This increase was accounted for by a rise in inositol 1,3,4-trisphosphate; inositol 1,4,5-trisphosphate was unaffected. This finding is consistent with the observation that Li+ has no effect on Ca2+-mediated responses in these cells. The role, if any, of inositol 1,3,4-trisphosphate in cellular function is unknown.  相似文献   

9.
Many cells (including angiotensin II target cells) respond to external stimuli with accelerated hydrolysis of phosphatidylinositol 4,5-bisphosphate, generating 1,2-diacylglycerol and inositol 1,4,5-trisphosphate, a rapidly diffusible and potent Ca2+-mobilizing factor. Following its production at the plasma membrane level, inositol 1,4,5-trisphosphate is believed to interact with specific sites in the endoplasmic reticulum and triggers the release of stored Ca2+. Specific receptor sites for inositol 1,4,5-trisphosphate were recently identified in the bovine adrenal cortex (Baukal, A. J., Guillemette, G., Rubin, R., Sp?t, A., and Catt, K. J. (1985) Biochem. Biophys. Res. Commun. 133, 532-538) and have been further characterized in the adrenal cortex and other target tissues. The inositol 1,4,5-trisphosphate-binding sites are saturable and present in low concentration (104 +/- 48 fmol/mg protein) and exhibit high affinity for inositol 1,4,5-trisphosphate (Kd 1.7 +/- 0.6 nM). Their ligand specificity is illustrated by their low affinity for inositol 1,4-bisphosphate (Kd approximately 10(-7) M), inositol 1-phosphate and phytic acid (Kd approximately 10(-4) M), fructose 1,6-bisphosphate and 2,3-bisphosphoglycerate (Kd approximately 10(-3) M), with no detectable affinity for inositol 1-phosphate and myo-inositol. These binding sites are distinct from the degradative enzyme, inositol trisphosphate phosphatase, which has a much lower affinity for inositol trisphosphate (Km = 17 microM). Furthermore, submicromolar concentrations of inositol 1,4,5-trisphosphate evoked a rapid release of Ca2+ from nonmitochondrial ATP-dependent storage sites in the adrenal cortex. Specific and saturable binding sites for inositol 1,4,5-trisphosphate were also observed in the anterior pituitary (Kd = 0.87 +/- 0.31 nM, Bmax = 14.8 +/- 9.0 fmol/mg protein) and in the liver (Kd = 1.66 +/- 0.7 nM, Bmax = 147 +/- 24 fmol/mg protein). These data suggest that the binding sites described in this study are specific receptors through which inositol 1,4,5-trisphosphate mobilizes Ca2+ in target tissues for angiotensin II and other calcium-dependent hormones.  相似文献   

10.
Rat brain homogenates contain significant amounts of inositol 1,4,5-trisphosphate phosphatase in both 180,000xg (60 min) particulate and supernatant fractions. As other membrane-bound enzymes (e.g. guanylate cyclase), particulate inositol 1,4,5-trisphosphate phosphatase activity is highly sensitive to low concentrations of Triton X-100 (0.03%). Higher concentrations of detergent (1%) partially solubilized the enzyme. Thiol blocking agents (e.g. p-hydroxymercuribenzoate) inactivate inositol 1,4,5-trisphosphate phosphatase activity (an effect reversed with 2-mercaptoethanol). It is thus suggested that enzymatic activity requires the presence of -SH groups.  相似文献   

11.
ABSTRACT: Autophagy is an important cell-biological process responsible for the disposal of long-lived proteins, protein aggregates, defective organelles and intracellular pathogens. It is activated in response to cellular stress and plays a role in development, cell differentiation, and ageing. Moreover, it has been shown to be involved in different pathologies, including cancer and neurodegenerative diseases. It is a long standing issue whether and how the Ca2+ ion is involved in its regulation. The role of the inositol 1,4,5-trisphosphate receptor, the main intracellular Ca2+-release channel, in apoptosis is well recognized, but its role in autophagy only recently emerged and is therefore much less well understood. Positive as well as negative effects on autophagy have been reported for both the inositol 1,4,5-trisphosphate receptor and Ca2+. This review will critically present the evidence for a role of the inositol 1,4,5-trisphosphate receptor/Ca2+-release channel in autophagy and will demonstrate that depending on the cellular conditions it can either suppress or promote autophagy. Suppression occurs through Ca2+ signals directed to the mitochondria, fueling ATP production and decreasing AMP-activated kinase activity. In contrast, Ca2+-induced autophagy can be mediated by several pathways including calmodulin-dependent kinase kinase β, calmodulin-dependent kinase I, protein kinase C θ, and/or extracellular signal-regulated kinase.  相似文献   

12.
Platelets, and a variety of other cells, rapidly hydrolyze the phosphoinositides in response to stimulation by agonists. One of the products of hydrolysis of phosphatidylinositol 4,5-diphosphate is inositol 1,4,5-trisphosphate, which recently has been suggested to mediate intracellular Ca2+ mobilization. We have found that human platelets contain an enzyme that degrades inositol 1,4,5-trisphosphate. We have isolated this soluble enzyme and find that it hydrolyzes the 5-phosphate of inositol 1,4,5-trisphosphate (Km = 30 microM, Vmax = 5.3 microM/min/mg of protein). The products of the reaction are inositol 1,4-diphosphate and phosphate. The apparent molecular weight of the enzyme is 38,000 as determined both by gel filtration and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence and absence of 2-mercaptoethanol. This enzyme is specific for inositol 1,4,5-trisphosphate. Other water soluble inositol phosphates as well as phosphorylated sugars are not hydrolyzed, while the only inositol containing phospholipid hydrolyzed is phosphatidylinositol 4,5-diphosphate at a rate less than 1% that for inositol 4,5-trisphosphate. The inositol 1,4,5-trisphosphate 5-phosphomonoesterase requires Mg2+ for activity and is inhibited by Ca2+, Ki = 70 microM. Li+, up to 40 mM, has no effect on enzyme activity. The duration and magnitude of any inositol 1,4,5-trisphosphate response in stimulated platelets may be determined by the activity of this enzyme.  相似文献   

13.
Semi-synthetic inositol 1,2-cyclic 4,5-trisphosphate is 1/16th as potent as inositol 1,4,5-trisphosphate in releasing Ca2+ from intracellular stores in permeabilized mouse pancreatic acinar cells. Competitive displacement studies in mouse pancreatic microsomes show that the affinity of inositol 1,2-cyclic 4,5-trisphosphate is 1/20th of that of inositol 1,4,5-trisphosphate at the latter's receptor, indicating that the lower potency of inositol 1,2-cyclic 4,5-trisphosphate in releasing Ca2+ can be accounted for by a weaker affinity at the receptor. These results suggest that inositol 1,2-cyclic 4,5-trisphosphate is unlikely to play any significant role in Ca2+ mobilization, at least in mouse pancreatic acinar cells.  相似文献   

14.
W Abebe  K M MacLeod 《Life sciences》1991,49(13):PL85-PL90
The effects of norepinephrine on total tissue levels of inositol 1,4,5-trisphosphate were measured by protein binding assay in aortas from rats with chronic streptozotocin-induced diabetes and from age-matched control rats. In both control and diabetic aortas, norepinephrine induced a rapid, transient and concentration-dependent elevation of inositol 1,4,5-trisphosphate content during contraction. Maximum production of inositol 1,4,5-trisphosphate in response to norepinephrine was greater in diabetic than in control aortas. However, the sensitivities of control and diabetic aortas to norepinephrine for inositol 1,4,5-trisphosphate production were not significantly different. Enhanced norepinephrine-induced production of inositol 1,4,5-trisphosphate in diabetic aortas may contribute to the increased maximum contractile responsiveness of these arteries to the agonist. However, since enhanced contractile responses of diabetic aortas to norepinephrine were also detected at times when inositol 1,4,5-trisphosphate levels were not significantly increased, other factors also appear to be involved in mediating enhanced contractions of diabetic arteries to norepinephrine.  相似文献   

15.
Frog skeletal muscle contains a kinase activity that phosphorylates inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate. The inositol 1,4,5-trisphosphate 3-kinase activity was mainly recovered in the soluble fraction, where it presented a marked dependency on free calcium concentration in the physiological range in the presence of endogenous calmodulin. At pCa 5, where the activity was highest, the soluble 3-kinase activity displayed a Km for inositol 1,4,5-trisphosphate of 1.6 μM and a Vmax value of 25.1 pmol mg−1 min−1. The removal rates of inositol 1,4,5-trisphosphate by 3-kinase and 5-phosphatase activities of the total homogenate under physiological ionic conditions were very similar, suggesting that both routes are equally important in metabolizing inositol 1,4,5-trisphosphate in frog skeletal muscle.  相似文献   

16.
Inositol 1,4,5-trisphosphate 5-phosphatase catalyses the dephosphorylation of the phosphate in the 5-position from inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate. One particulate and two soluble enzymes were previously described in bovine brain. In this study, we have obtained a precipitating antiserum against soluble type I inositol 1,4,5-trisphosphate 5-phosphatase. The particulate, but not the soluble type II enzyme, was immunoprecipitated by the serum. Inositol 1,4,5-triphosphate 5-phosphatase activity from crude extracts of rat brain, human platelets and rat liver were immmunoprecipitated by the same antibodies, suggesting the existence of common antigenic determinant among inositol 1,4,5-trisphosphate 5-phosphatases of diverse sources.  相似文献   

17.
Calcium concentrations are strictly regulated in all biological cells, and one of the key molecules responsible for this regulation is the inositol 1,4,5-trisphosphate receptor, which was known to form a homotetrameric Ca(2+) channel in the endoplasmic reticulum. The receptor is involved in neuronal transmission via Ca(2+) signaling and for many other functions that relate to morphological and physiological processes in living organisms. We analysed the three-dimensional structure of the ligand-free form of the receptor based on a single-particle technique using an originally developed electron microscope equipped with a helium-cooled specimen stage and an automatic particle picking system. We propose a model that explains the complex mechanism for the regulation of Ca(2+) release by co-agonists, Ca(2+), inositol 1,4,5-trisphosphate based on the structure of multiple internal cavities and a porous balloon-shaped cytoplasmic domain containing a prominent L-shaped density which was assigned by the X-ray structure of the inositol 1,4,5-trisphosphate binding domain.  相似文献   

18.
We examined the effects of inositol-1,4,5-trisphosphate on 45Ca uptake and 45Ca efflux in the saponin skinned primary cultured rat aortic smooth muscle cells. 10 microM inositol-1,4,5-trisphosphate induced a rapid (half time less than 10 sec) and large quantity of Ca release in both 45Ca uptake and 45Ca efflux in the skinned cells preloaded with 1 microM free Ca. Dose response curves showed that 100 microM inositol-1,4,5-trisphosphate produced a maximal Ca release of 97.3% of the MgATP dependent 45Ca uptake or 289 mumoles/liter cells, which was much greater than the maximal caffeine induced Ca release and would be sufficient to produce maximal tension.  相似文献   

19.
D-myo-Inositol 1,4,5-trisphosphate has been previously demonstrated to act as a second messenger for the hormonal mobilization of intracellular calcium in rat liver. In this study, the breakdown of D-myo-inositol 1,4,5-trisphosphate by a phosphatase activity was characterized. Using partially purified subcellular fractions, it was found that D-myo-inositol 1,4,5-trisphosphate phosphatase (I-P3ase) specific activity was highest in the plasma membrane fraction, while D-myo-inositol 1,4-bisphosphate phosphatase specific activity was highest in the cytosolic and microsomal fractions. The plasma membrane I-P3ase was Mg2+-dependent with optimal activity observed at 0.5-1.5 mM free Mg2+. The enzyme had a neutral pH optimum, suggesting that it was neither an acid nor alkaline phosphatase. Neither LiCl nor NaF inhibited the I-P3ase activity. However, both L-cysteine and dithiothreitol stimulated the activity 2-fold. Spermine (2.0 mM) inhibited the I-P3ase activity by 50%, while putrescine and spermidine had little or no effect.  相似文献   

20.
The ability of D-6-deoxy-myo-inositol 1,4,5-trisphosphate [6-deoxy-Ins(1,4,5)P3], a synthetic analogue of the second messenger D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], to mobilise intracellular Ca2+ stores in permeabilised SH-SY5Y neuroblastoma cells was investigated. 6-Deoxy-Ins(1,4,5)P3 was a full agonist (EC50 = 6.4 microM), but was some 70-fold less potent than Ins (1,4,5)P3 (EC50 = 0.09 microM), indicating that the 6-hydroxyl group of Ins(1,4,5)P3 is important for receptor binding and stimulation of Ca2+ release, but is not an essential structural feature. 6-Deoxy-Ins(1,4,5)P3 was not a substrate for Ins (1,4,5)P3 5-phosphatase, but inhibited both the hydrolysis of 5-[32P]+ Ins (1,4,5)P3 (Ki 76 microM) and the phosphorylation of [3H]Ins(1,4,5)P3 (apparent Ki 5.7 microM). 6-Deoxy-Ins (1,4,5)P3 mobilized Ca2+ with different kinetics to Ins(1,4,5)P3, indicating that it is probably a substrate for Ins (1,4,5)P3 3-kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号