首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The cellular prion protein (PrPC) plays a key role in the pathogenesis of Transmissible Spongiform Encephalopathies in which the protein undergoes post-translational conversion to the infectious form (PrPSc). Although endocytosis appears to be required for this conversion, the mechanism of PrPC internalization is still debated, as caveolae/raft- and clathrin-dependent processes have all been reported to be involved.

Methodology/Principal Findings

We have investigated the mechanism of PrPC endocytosis in Fischer Rat Thyroid (FRT) cells, which lack caveolin-1 (cav-1) and caveolae, and in FRT/cav-1 cells which form functional caveolae. We show that PrPC internalization requires activated Cdc-42 and is sensitive to cholesterol depletion but not to cav-1 expression suggesting a role for rafts but not for caveolae in PrPC endocytosis. PrPC internalization is also affected by knock down of clathrin and by the expression of dominant negative Eps15 and Dynamin 2 mutants, indicating the involvement of a clathrin-dependent pathway. Notably, PrPC co-immunoprecipitates with clathrin and remains associated with detergent-insoluble microdomains during internalization thus indicating that PrPC can enter the cell via multiple pathways and that rafts and clathrin cooperate in its internalization.

Conclusions/Significance

These findings are of particular interest if we consider that the internalization route/s undertaken by PrPC can be crucial for the ability of different prion strains to infect and to replicate in different cell lines.  相似文献   

2.

Background

Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic electroencephalographic (EEG) disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational isoform (PrPsc) of the natural cellular prion protein (PrPc) encoded by the Prnp gene. Although several roles have been attributed to PrPc, its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp knockout mice described minor changes, later studies report altered behavior. To date, most functional PrPc studies on synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation.

Methodology/Principal Findings

Here we explore the role of PrPc expression in neurotransmission and neural excitability using wild-type, Prnp −/− and PrPc-overexpressing mice (Tg20 strain). By correlating histopathology with electrophysiology in living behaving mice, we demonstrate that both Prnp −/− mice but, more relevantly Tg20 mice show increased susceptibility to KA, leading to significant cell death in the hippocampus. This finding correlates with enhanced synaptic facilitation in paired-pulse experiments and hippocampal LTP in living behaving mutant mice. Gene expression profiling using Illumina™ microarrays and Ingenuity pathways analysis showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission were co-regulated in Prnp −/− and Tg20 mice. Lastly, RT-qPCR of neurotransmission-related genes indicated that subunits of GABAA and AMPA-kainate receptors are co-regulated in both Prnp −/− and Tg20 mice.

Conclusions/Significance

Present results demonstrate that PrPc is necessary for the proper homeostatic functioning of hippocampal circuits, because of its relationships with GABAA and AMPA-Kainate neurotransmission. New PrPc functions have recently been described, which point to PrPc as a target for putative therapies in Alzheimer''s disease. However, our results indicate that a “gain of function” strategy in Alzheimer''s disease, or a “loss of function” in prionopathies, may impair PrPc function, with devastating effects. In conclusion, we believe that present data should be taken into account in the development of future therapies.  相似文献   

3.

Objective

The glycoprofile of pathological prion protein (PrPres) is widely used as a diagnosis marker in Creutzfeldt-Jakob disease (CJD) and is thought to vary in a strain-specific manner. However, that the same glycoprofile of PrPres always accumulates in the whole brain of one individual has been questioned. We aimed to determine whether and how PrPres glycosylation is regulated in the brain of patients with sporadic and variant Creutzfeldt-Jakob disease.

Methods

PrPres glycoprofiles in four brain regions from 134 patients with sporadic or variant CJD were analyzed as a function of the genotype at codon 129 of PRNP and the Western blot type of PrPres.

Results

The regional distribution of PrPres glycoforms within one individual was heterogeneous in sporadic but not in variant CJD. PrPres glycoforms ratio significantly correlated with the genotype at codon 129 of the prion protein gene and the Western blot type of PrPres in a region-specific manner. In some cases of sCJD, the glycoprofile of thalamic PrPres was undistinguishable from that observed in variant CJD.

Interpretation

Regulations leading to variations of PrPres pattern between brain regions in sCJD patients, involving host genotype and Western blot type of PrPres may contribute to the specific brain targeting of prion strains and have direct implications for the diagnosis of the different forms of CJD.  相似文献   

4.

Background

A hallmark of the prion diseases is the conversion of the host-encoded cellular prion protein (PrPC) into a disease related, alternatively folded isoform (PrPSc). The accumulation of PrPSc within the brain is associated with synapse loss and ultimately neuronal death. Novel therapeutics are desperately required to treat neurodegenerative diseases including the prion diseases.

Principal Findings

Treatment with glimepiride, a sulphonylurea approved for the treatment of diabetes mellitus, induced the release of PrPC from the surface of prion-infected neuronal cells. The cell surface is a site where PrPC molecules may be converted to PrPSc and glimepiride treatment reduced PrPSc formation in three prion infected neuronal cell lines (ScN2a, SMB and ScGT1 cells). Glimepiride also protected cortical and hippocampal neurones against the toxic effects of the prion-derived peptide PrP82–146. Glimepiride treatment significantly reduce both the amount of PrP82–146 that bound to neurones and PrP82–146 induced activation of cytoplasmic phospholipase A2 (cPLA2) and the production of prostaglandin E2 that is associated with neuronal injury in prion diseases. Our results are consistent with reports that glimepiride activates an endogenous glycosylphosphatidylinositol (GPI)-phospholipase C which reduced PrPC expression at the surface of neuronal cells. The effects of glimepiride were reproduced by treatment of cells with phosphatidylinositol-phospholipase C (PI-PLC) and were reversed by co-incubation with p-chloromercuriphenylsulphonate, an inhibitor of endogenous GPI-PLC.

Conclusions

Collectively, these results indicate that glimepiride may be a novel treatment to reduce PrPSc formation and neuronal damage in prion diseases.  相似文献   

5.

Background

Recent advances toward an effective therapy for prion diseases employ RNA interference to suppress PrPC expression and subsequent prion neuropathology, exploiting the phenomenon that disease severity and progression correlate with host PrPC expression levels. However, delivery of lentivirus encoding PrP shRNA has demonstrated only modest efficacy in vivo.

Methodology/Principal Findings

Here we describe a new siRNA delivery system incorporating a small peptide that binds siRNA and acetylcholine receptors (AchRs), acting as a molecular messenger for delivery to neurons, and cationic liposomes that protect siRNA-peptide complexes from serum degradation.

Conclusions/Significance

Liposome-siRNA-peptide complexes (LSPCs) delivered PrP siRNA specifically to AchR-expressing cells, suppressed PrPC expression and eliminated PrPRES formation in vitro. LSPCs injected intravenously into mice resisted serum degradation and delivered PrP siRNA throughout the brain to AchR and PrPC-expressing neurons. These data promote LSPCs as effective vehicles for delivery of PrP and other siRNAs specifically to neurons to treat prion and other neuropathological diseases.  相似文献   

6.

Background

The cellular prion protein, PrPC, is GPI anchored and abundant in lipid rafts. The absolute requirement of PrPC in neurodegeneration associated to prion diseases is well established. However, the function of this ubiquitous protein is still puzzling. Our previous work using the 1C11 neuronal model, provided evidence that PrPC acts as a cell surface receptor. Besides a ubiquitous signaling function of PrPC, we have described a neuronal specificity pointing to a role of PrPC in neuronal homeostasis. 1C11 cells, upon appropriate induction, engage into neuronal differentiation programs, giving rise either to serotonergic (1C115-HT) or noradrenergic (1C11NE) derivatives.

Methodology/Principal Findings

The neuronal specificity of PrPC signaling prompted us to search for PrPC partners in 1C11-derived bioaminergic neuronal cells. We show here by immunoprecipitation an association of PrPC with an 80 kDa protein identified by mass spectrometry as the tissue non-specific alkaline phosphatase (TNAP). This interaction occurs in lipid rafts and is restricted to 1C11-derived neuronal progenies. Our data indicate that TNAP is implemented during the differentiation programs of 1C115-HT and 1C11NE cells and is active at their cell surface. Noteworthy, TNAP may contribute to the regulation of serotonin or catecholamine synthesis in 1C115-HT and 1C11NE bioaminergic cells by controlling pyridoxal phosphate levels. Finally, TNAP activity is shown to modulate the phosphorylation status of laminin and thereby its interaction with PrP.

Conclusion/Significance

The identification of a novel PrPC partner in lipid rafts of neuronal cells favors the idea of a role of PrP in multiple functions. Because PrPC and laminin functionally interact to support neuronal differentiation and memory consolidation, our findings introduce TNAP as a functional protagonist in the PrPC-laminin interplay. The partnership between TNAP and PrPC in neuronal cells may provide new clues as to the neurospecificity of PrPC function.  相似文献   

7.

Background

Migration of mature and immature leukocytes in response to chemokines is not only essential during inflammation and host defense, but also during development of the hematopoietic system. Many molecules implicated in migratory polarity show uniform cellular distribution under non-activated conditions, but acquire a polarized localization upon exposure to migratory cues.

Methodology/Principal Findings

Here, we present evidence that raft-associated endocytic proteins (flotillins) are pre-assembled in lymphoid, myeloid and primitive hematopoietic cells and accumulate in the uropod during migration. Furthermore, flotillins display a polarized distribution during immunological synapse formation. Employing the membrane lipid-order sensitive probe Laurdan, we show that flotillin accumulation in the immunological synapse is concomittant with membrane ordering in these regions.

Conclusions

Together with the observation that flotillin polarization does not occur in other polarized cell types such as polarized epithelial cells, our results suggest a specific role for flotillins in hematopoietic cell polarization. Based on our results, we propose that in hematopoietic cells, flotillins provide intrinsic cues that govern segregation of certain microdomain-associated molecules during immune cell polarization.  相似文献   

8.

Background

Prion diseases are fatal neurodegenerative disorders characterized by misfolding and aggregation of the normal prion protein PrPC. Little is known about the details of the structural rearrangement of physiological PrPC into a still-elusive disease-associated conformation termed PrPSc. Increasing evidence suggests that the amino-terminal octapeptide sequences of PrP (huPrP, residues 59–89), though not essential, play a role in modulating prion replication and disease presentation.

Methodology/Principal Findings

Here, we report that trypsin digestion of PrPSc from variant and sporadic human CJD results in a disease-specific trypsin-resistant PrPSc fragment including amino acids ∼49–231, thus preserving important epitopes such as the octapeptide domain for biochemical examination. Our immunodetection analyses reveal that several epitopes buried in this region of PrPSc are exposed in PrPC.

Conclusions/Significance

We conclude that the octapeptide region undergoes a previously unrecognized conformational transition in the formation of PrPSc. This phenomenon may be relevant to the mechanism by which the amino terminus of PrPC participates in PrPSc conversion, and may also be exploited for diagnostic purposes.  相似文献   

9.

Background

According to the prevailing view, soluble oligomers or small fibrillar fragments are considered to be the most toxic species in prion diseases. To test this hypothesis, two conformationally different amyloid states were produced from the same highly pure recombinant full-length prion protein (rPrP). The cytotoxic potential of intact fibrils and fibrillar fragments generated by sonication from these two states was tested using cultured cells.

Methodology/Principal Findings

For one amyloid state, fibril fragmentation was found to enhance its cytotoxic potential, whereas for another amyloid state formed within the same amino acid sequence, the fragmented fibrils were found to be substantially less toxic than the intact fibrils. Consistent with the previous studies, the toxic effects were more pronounced for cell cultures expressing normal isoform of the prion protein (PrPC) at high levels confirming that cytotoxicity was in part PrPC-dependent. Silencing of PrPC expression by small hairpin RNAs designed to silence expression of human PrPC (shRNA-PrPC) deminished the deleterious effects of the two amyloid states to a different extent, suggesting that the role of PrPC-mediated and PrPC-independent mechanisms depends on the structure of the aggregates.

Conclusions/Significance

This work provides a direct illustration that the relationship between an amyloid''s physical dimension and its toxic potential is not unidirectional but is controlled by the molecular structure of prion protein (PrP) molecules within aggregated states. Depending on the structure, a decrease in size of amyloid fibrils can either enhance or abolish their cytotoxic effect. Regardless of the molecular structure or size of PrP aggregates, silencing of PrPC expression can be exploited to reduce their deleterious effects.  相似文献   

10.
11.

Background

The accumulation of protease resistant conformers of the prion protein (PrPres) is a key pathological feature of prion diseases. Polyanions, including RNA and glycosaminoglycans have been identified as factors that contribute to the propagation, transmission and pathogenesis of prion disease. Recent studies have suggested that the contribution of these cofactors to prion propagation may be species specific.

Methodology/Principal Finding

In this study a cell-free assay was used to investigate the molecular basis of polyanion stimulated PrPres formation using brain tissue or cell line derived murine PrP. Enzymatic depletion of endogenous nucleic acids or heparan sulphate (HS) from the PrPC substrate was found to specifically prevent PrPres formation seeded by mouse derived PrPSc. Modification of the negative charge afforded by the sulphation of glycosaminoglycans increased the ability of a familial PrP mutant to act as a substrate for PrPres formation, while having no effect on PrPres formed by wildtype PrP. This difference may be due to the observed differences in the binding of wild type and mutant PrP for glycosaminoglycans.

Conclusions/Significance

Cofactor requirements for PrPres formation are host species and prion strain specific and affected by disease associated mutations of the prion protein. This may explain both species and strain dependent propagation characteristics and provide insights into the underlying mechanisms of familial prion disease. It further highlights the challenge of designing effective therapeutics against a disease which effects a range of mammalian species, caused by range of aetiologies and prion strains.  相似文献   

12.

Background

Variant Creutzfeldt-Jakob disease (vCJD) is a neurodegenerative infectious disorder, characterized by a prominent accumulation of pathological isoforms of the prion protein (PrPTSE) in the brain and lymphoid tissues. Since the publication in the United Kingdom of four apparent vCJD cases following transfusion of red blood cells and one apparent case following treatment with factor VIII, the presence of vCJD infectivity in the blood seems highly probable. For effective blood testing of vCJD individuals in the preclinical or clinical phase of infection, it is considered necessary that assays detect PrPTSE concentrations in the femtomolar range.

Methodology/Principal Findings

We have developed a three-step assay that firstly captures PrPTSE from infected blood using a plasminogen-coated magnetic-nanobead method prior to its serial amplification via protein misfolding cyclic amplification (PMCA) and specific PrPTSE detection by western blot. We achieved a PrPTSE capture yield of 95% from scrapie-infected material. We demonstrated the possibility of detecting PrPTSE in white blood cells, in buffy coat and in plasma isolated from the blood of scrapie-infected sheep collected at the pre-clinical stage of the disease. The test also allowed the detection of PrPTSE in human plasma spiked with a 10−8 dilution of vCJD-infected brain homogenate corresponding to the level of sensitivity (femtogram) required for the detection of the PrPTSE in asymptomatic carriers. The 100% specificity of the test was revealed using a blinded panel comprising 96 human plasma samples.

Conclusion/Significance

We have developed a sensitive and specific amplification assay allowing the detection of PrPTSE in the plasma and buffy coat fractions of blood collected at the pre-clinical phase of the disease. This assay represents a good candidate as a confirmatory assay for the presence of PrPTSE in blood of patients displaying positivity in large scale screening tests.  相似文献   

13.

Background

It has been reported that cellular prion protein (PrPc) co-localizes with caveolin-1 and participates to signal transduction events by recruiting Fyn kinase. As PrPc is a secreted protein anchored to the outer surface membrane through a glycosylphosphatidylinositol (GPI) anchor (secPrP) and caveolin-1 is located in the inner leaflet of plasma membrane, there is a problem of how the two proteins can physically interact each other and transduce signals.

Results

By using the GST-fusion proteins system we observed that PrPc strongly interacts with caveolin-1 scaffolding domain and with a caveolin-1 hydrophilic C-terminal region, but not with the caveolin-1 N-terminal region. In vitro binding experiments were also performed to define the site(s) of PrPc interacting with cav-1. The results are consistent with a participation of PrPc octapeptide repeats motif in the binding to caveolin-1 scaffolding domain. The caveolar localization of PrPc was ascertained by co-immunoprecipitation, by co-localization after flotation in density gradients and by confocal microscopy analysis of PrPc and caveolin-1 distributions in a neuronal cell line (GN11) expressing caveolin-1 at high levels.

Conclusions

We observed that, after antibody-mediated cross-linking or copper treatment, PrPc was internalized probably into caveolae. We propose that following translocation from rafts to caveolae or caveolae-like domains, secPrP could interact with caveolin-1 and induce signal transduction events.
  相似文献   

14.

Background

A key event in transmissible spongiform encephalopathies (TSEs) is the conversion of the soluble, protease-sensitive glycosylated prion protein (PrPC) to an abnormally structured, aggregated and partially protease-resistant isoform (PrPSc). Both PrP isoforms bear two potential glycosylation sites and thus in a typical western blot with an anti-PrP antibody three distinct bands appear, corresponding to the di-, mono- or unglycosylated forms of the protein. The relative intensity and electrophoretic mobility of the three bands are characteristic of each TSE strain and have been used to discriminate between them.

Methodology/Principal Findings

In the present study we used lectin-based western blotting to evaluate possible variations in composition within sugar chains carried by PrPSc purified from subjects affected with different TSEs. Our findings indicate that in addition to the already well-documented differences in electrophoretic mobility and amounts of the glycosylated PrPSc forms, TSE strains also vary in the abundance of specific N-linked sugars of the PrPSc protein.

Conclusions/Significance

These results imply that PrP glycosylation might fine-tune the conversion of PrPC to PrPSc and could play an accessory role in the appearance of some of the characteristic features of TSE strains. The differences in sugar composition could also be used as an additional tool for discrimination between the various TSEs.  相似文献   

15.

Background

In prion disease, the peripheral expression of PrPC is necessary for the transfer of infectivity to the central nervous system. The spleen is involved in neuroinvasion and neural dissemination in prion diseases but the nature of this involvement is not known. The present study undertook the investigation of the spatial relationship between sites of PrPSc accumulation, localisation of nerve fibres and PrPC expression in the tissue compartments of the spleen of scrapie-inoculated and control sheep.

Methodology/Principal Findings

Laser microdissection and quantitative PCR were used to determine PrP mRNA levels and results were compared with immunohistochemical protocols to distinguish PrPC and PrPSc in tissue compartments of the spleen. In sheep experimentally infected with scrapie, the major sites of accumulation of PrPSc in the spleen, namely the lymphoid nodules and the marginal zone, expressed low levels of PrP mRNA. Double immunohistochemical labelling for PrPSc and the pan-nerve fibre marker, PGP, was used to evaluate the density of innervation of splenic tissue compartments and the intimacy of association between PrPSc and nerves. Some nerve fibres were observed to accompany blood vessels into the PrPSc-laden germinal centres. However, the close association between nerves and PrPSc was most apparent in the marginal zone. Other sites of close association were adjacent to the wall of the central artery of PALS and the outer rim of germinal centres.

Conclusions/Significance

The findings suggest that the degree of PrPSc accumulation does not depend on the expression level of PrPC. Though several splenic compartments may contribute to neuroinvasion, the marginal zone may play a central role in being the compartment with most apparent association between nerves and PrPSc.  相似文献   

16.

Background

Intestinal barrier dysfunction and translocation of endotoxins are involved in the pathogenesis of alcoholic liver disease. Exposure to ethanol and its metabolite, acetaldehyde at relatively high concentrations have been shown to disrupt intestinal epithelial tight junctions in the conventional two dimensional cell culture models. The present study investigated quantitatively and qualitatively the effects of ethanol at concentrations detected in the blood after moderate ethanol consumption, of its metabolite acetaldehyde and of the combination of both compounds on intestinal barrier function in a three-dimensional cell culture model.

Methods and Findings

Caco-2 cells were grown in a basement membrane matrix (Matrigel™) to induce spheroid formation and were then exposed to the compounds at the basolateral side. Morphological differentiation of the spheroids was assessed by immunocytochemistry and transmission electron microscopy. The barrier function was assessed by the flux of FITC-labeled dextran from the basal side into the spheroids'' luminal compartment using confocal microscopy. Caco-2 cells grown on Matrigel assembled into fully differentiated and polarized spheroids with a central lumen, closely resembling enterocytes in vivo and provide an excellent model to study epithelial barrier functionality. Exposure to ethanol (10–40 mM) or acetaldehyde (25–200 µM) for 3 h, dose-dependently and additively increased the paracellular permeability and induced redistribution of ZO-1 and occludin without affecting cell viability or tight junction-encoding gene expression. Furthermore, ethanol and acetaldehyde induced lysine residue and microtubules hyperacetylation.

Conclusions

These results indicate that ethanol at concentrations found in the blood after moderate drinking and acetaldehyde, alone and in combination, can increase the intestinal epithelial permeability. The data also point to the involvement of protein hyperacetylation in ethanol- and acetaldehyde-induced loss of tight junctions integrity.  相似文献   

17.

Background

LysoTracker Green DND-26 is a fluorescent dye that stains acidic compartments in live cells and has been shown to selectively accumulate in lamellar bodies in alveolar type II (AT2) cells in the lung. The aim of this study was to determine whether the accumulation of LysoTracker in lamellar bodies can be used to isolate viable AT2 cells by flow cytometry and track their differentiation in live-cell culture by microscopy.

Methods

Mouse lung cells were sorted on the basis of CD45negCD31negEpCAMposLysoTrackerpos expression and characterized by immunostaining for SP-C and cultured in a three-dimensional epithelial colony-forming unit (CFU-Epi) assay. To track AT2 cell differentiation, lung epithelial stem and progenitor cells were cultured in a CFU-Epi assay with LysoTracker-supplemented media.

Results

The purity of sorted AT2 cells as determined by SP-C staining was 97.4% and viability was 85.3%. LysoTrackerpos AT2 cells generated SP-Cpos alveolar epithelial cell colonies in culture, and when added to the CFU-Epi culture medium, LysoTracker marked the differentiation of stem/progenitor-derived AT2 cells.

Conclusions

This study describes a novel method for isolating AT2 cells from mouse lungs. The high purity and viability of cells attained by this method, makes them suitable for functional analysis in vitro. The application of LysoTracker to live cell cultures will allow better assessment of the cellular and molecular mechanisms that regulate AT2 cell differentiation.  相似文献   

18.

Background

Prion diseases are fatal neurodegenerative disorders that can arise sporadically, be genetically inherited or acquired through infection. The key event in these diseases is misfolding of the cellular prion protein (PrPC) into a pathogenic isoform that is rich in β-sheet structure. This conformational change may result in the formation of PrPSc, the prion isoform of PrP, which propagates itself by imprinting its aberrant conformation onto PrPC molecules. A great deal of effort has been devoted to developing protocols for purifying PrPSc for structural studies, and testing its biological properties. Most procedures rely on protease digestion, allowing efficient purification of PrP27-30, the protease-resistant core of PrPSc. However, protease treatment cannot be used to isolate abnormal forms of PrP lacking conventional protease resistance, such as those found in several genetic and atypical sporadic cases.

Principal Findings

We developed a method for purifying pathological PrP molecules based on sequential centrifugation and immunoprecipitation with a monoclonal antibody selective for aggregated PrP. With this procedure we purified full-length PrPSc and mutant PrP aggregates at electrophoretic homogeneity. PrPSc purified from prion-infected mice was able to seed misfolding of PrPC in a protein misfolding cyclic amplification reaction, and mutant PrP aggregates from transgenic mice were toxic to cultured neurons.

Significance

The immunopurification protocol described here isolates biologically active forms of aggregated PrP. These preparations may be useful for investigating the structural and chemico-physical properties of infectious and neurotoxic PrP aggregates.  相似文献   

19.

Background

Prolonged exposure to hyperoxia in neonates can cause hyperoxic acute lung injury (HALI), which is characterized by increased pulmonary permeability and diffuse infiltration of various inflammatory cells. Disruption of the epithelial barrier may lead to altered pulmonary permeability and maintenance of barrier properties requires intact epithelial tight junctions (TJs). However, in neonatal animals, relatively little is known about how the TJ proteins are expressed in the pulmonary epithelium, including whether expression of TJ proteins is regulated in response to hyperoxia exposure. This study determines whether changes in tight junctions play an important role in disruption of the pulmonary epithelial barrier during hyperoxic acute lung injury.

Methods

Newborn rats, randomly divided into two groups, were exposed to hyperoxia (95% oxygen) or normoxia for 1–7 days, and the severity of lung injury was assessed; location and expression of key tight junction protein occludin and ZO-1 were examined by immunofluorescence staining and immunobloting; messenger RNA in lung tissue was studied by RT-PCR; transmission electron microscopy study was performed for the detection of tight junction morphology.

Results

We found that different durations of hyperoxia exposure caused different degrees of lung injury in newborn rats. Treatment with hyperoxia for prolonged duration contributed to more serious lung injury, which was characterized by increased wet-to-dry ratio, extravascular lung water content, and bronchoalveolar lavage fluid (BALF):serum FD4 ratio. Transmission electron microscopy study demonstrated that hyperoxia destroyed the structure of tight junctions and prolonged hyperoxia exposure, enhancing the structure destruction. The results were compatible with pathohistologic findings. We found that hyperoxia markedly disrupted the membrane localization and downregulated the cytoplasm expression of the key tight junction proteins occludin and ZO-1 in the alveolar epithelium by immunofluorescence. The changes of messenger RNA and protein expression of occludin and ZO-1 in lung tissue detected by RT-PCR and immunoblotting were consistent with the degree of lung injury.

Conclusions

These data suggest that the disruption of the pulmonary epithelial barrier induced by hyperoxia is, at least in part, due to massive deterioration in the expression and localization of key TJ proteins.  相似文献   

20.

Background

Cellular prion-related protein (PrPc) is a cell-surface protein that is ubiquitously expressed in the human body. The multifunctionality of PrPc, and presence of an exposed cationic and heparin-binding N-terminus, a feature characterizing many antimicrobial peptides, made us hypotesize that PrPc could exert antimicrobial activity.

Methodology and Principal Findings

Intact recombinant PrP exerted antibacterial and antifungal effects at normal and low pH. Studies employing recombinant PrP and N- and C-terminally truncated variants, as well as overlapping peptide 20mers, demonstrated that the antimicrobial activity is mediated by the unstructured N-terminal part of the protein. Synthetic peptides of the N-terminus of PrP killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen after treatment with the “classical” human antimicrobial peptide LL-37. In contrast to LL-37, however, no marked helix induction was detected for the PrP-derived peptides in presence of negatively charged (bacteria-mimicking) liposomes. PrP furthermore showed an inducible expression during wounding of human skin ex vivo and in vivo, as well as stimulation of keratinocytes with TGF-α in vitro.

Conclusions

The demonstration of an antimicrobial activity of PrP, localisation of its activity to the N-terminal and heparin-binding region, combined with results showing an increased expression of PrP during wounding, indicate that PrPs could have a previously undisclosed role in host defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号