首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.
AequoScreen, a cellular aequorin-based functional assay, has been optimized for luminescent high-throughput screening (HTS) of G protein-coupled receptor (GPCRs). AequoScreen is a homogeneous assay in which the cells are loaded with the apoaequorin cofactor coelenterazine, diluted in assay buffer, and injected into plates containing the samples to be tested. A flash of light is emitted following the calcium increase resulting from the activation of the GPCR by the sample. Here we have validated a new plate reader, the Hamamatsu Photonics FDSS6000, for HTS in 96- and 384-well plates with CHO-K1 cells stably coexpressing mitochondrial apoaequorin and different GPCRs (AequoScreen cell lines). The acquisition time, plate type, and cell number per well have been optimized to obtain concentration-response curves with 4000 cells/well in 384-well plates and a high signal:background ratio. The FDSS6000 and AequoScreen cell lines allow reading of twenty 96- or 384-well plates in 1 h with Z' values of 0.71 and 0.78, respectively. These results bring new insights to functional assays, and therefore reinforce the interest in aequorin-based assays in a HTS environment.  相似文献   

2.
A simple luminescence-based assay for screening the viability of mammalian cells is described, based on the monitoring of cell respiration by means of a phosphorescent water-soluble oxygen probe that responds to changes in the concentration of dissolved oxygen by changing its emission intensity and lifetime. The probe was added at low concentrations (0.3 microM to 0.5 nM) to each sample containing a culture of cells in the wells of a standard 96-well plate. Analysis of oxygen consumption was initiated by applying a layer of mineral oil on top of each sample followed by monitoring of the phosphorescent signal on a prompt or time-resolved fluorescence plate reader. Rates of oxygen uptake could be determined on the basis of kinetic changes of the phosphorescence (initial slopes) and correlated with cell numbers (10(5) to 10(7) cells/mL for FL5.12 lymphoblastic cell line), cell viability, or drug/effector action using appropriate control samples. The assay is cell noninvasive, more simple, robust, and cost-effective than existing microplate-based cell viability assays; is compatible with existing instrumentation; and allows for high-throughput analysis of cell viability.  相似文献   

3.
Lamb JR  Goehle S  Ludlow C  Simon JA 《BioTechniques》2001,30(5):1118-20, 1122, 1124
The primary goal of anticancer chemotherapy is to kill cancer cells. Therefore, it is of critical importance that any assay that is used to determine the toxicity of a potential anticancer drug accurately measures viability. While colony formation is widely regarded as the most accurate measure of viability following drug treatment, it is laborious, time consuming, and difficult to carry out with non-adherent cells. For these reasons, it is not suitable for moderate- to high-throughput screening applications. We sought to identify a convenient and reliable assay that would accurately reproduce colony formation results and be amenable to high-throughput applications. Here, we describe a modification of the 3H-thymidine incorporation assay that meets these criteria. The assay can be carried out in 96-well plates with minimal handling of reagents and media. It can be performed with non-adherent and adherent cell lines. Most importantly, LC50 values obtained with this assay show excellent agreement with colony formation results. Taken together, these advantages make the modified 3H-thymidine incorporation assay well suited for high-throughput viability assays in anticancer drug discovery and development.  相似文献   

4.
For studying mechanotransduction in cultured cells, we developed a microplate assay using a fluorescence/luminescence plate reader equipped with software-controlled injectors to deliver a reproducible mechanical stimulus (adjustable for both timing and force) and immediately measure adenosine 5(')-triphosphate (ATP) release and calcium mobilization. Suspension or adherent chondrocyte cultures in 96-well plates were incubated with firefly luciferase and luciferin for the ATP assay or loaded with Fluo-3-acetoxy methylester for intracellular calcium measurement. Steady state ATP release was measured in resting cells; then mechanical stimulation was delivered by injection of an equal volume of buffer into the wells. Serial integrations of 20 to 500ms allowed real-time analysis of the time course of ATP release. Luminescence increased within 500ms indicating the rapidity of ATP release in chondrocyte mechanotransduction. Subsequent injection of a cell lysis solution allowed quantitation of total cellular ATP as an internal control of cell viability and number. Intracellular calcium was also elevated within 500ms of fluid injection. This assay is easily adapted for changes in intracellular pH or other ions by use of different commercially available fluorescent indicators. The live-cell assay using fluid injection as a mechanical stimulus is a valuable tool for dissecting the role of signaling pathways in mechanotransduction.  相似文献   

5.
Summary Oxidant injury of the vascular endothelium is considered an early event in the pathogenesis of atherosclerosis. The model of oxidant injury is crucial to the investigation of antioxidants. In the present study, a convenient in vitro model of oxidant injury induced by hydrogen peroxide (H2O2) was developed using bovine pulmonary artery endothelial cells (PAEC). Viability of PAEC grown in 96-well culture plates was determined with methylthiazol tetrazolium (MTT) colorimetric assay. Cell membrane integrity was measured by lactate dehydrogenase (LDH) release from PAEC grown in 24-well plates. Malondialdehyde (MDA, a product of lipid peroxidation) in PAEC grown in 6-well plates was detected by a thiobarbituric acid fluorometric assay. Incubation of H2O2 with PAEC caused a dose-dependent decrease of cell viability, an increase of LDH release, and an elevation of MDA production. MTT assay was convenient, quantitative, non-radioactive, and suitable for testing a large number of samples. The fluorometric assay for measuring MDA production in endothelial cells used 6-well plates instead of 80-cm2 flasks employed by previous investigators. The use of multiwell culture plates in these assays made it possible for more samples to be tested in any single experiment. The three assays are reproducible with low intraplate and interplate coefficients of variation. This in vitro model is suitable for screening antioxidants and for studying pharmacodynamics at the cellular level.  相似文献   

6.
7.
A new method was developed to rapidly monitor the Pseudomonas aeruginosa viable counts using alamar blue (AB). The 96-well microtiter plates were used to perform the assay. This procedure is based on fluorogenic measurement as a result of reduction of nonfluorescent AB to red fluorescent form by the viable cells of P. aeruginosa. The correlation between conventional plate count and fluorogenic AB method was highly satisfactory for quantification of planktonic ( R2 =  0.9487) and biofilm cells of P. aeruginosa ( R2 =  0.9296).

PRACTICAL APPLICATIONS


The new fluorogenic method can rapidly monitor Pseudomonas aeruginosa counts in vitro with a high correlation with the conventional plating method. The results indicate that fluorogenic method requires much shorter time (2 h) than the conventional plate count (24 h), is a more cost-effective way, quite amenable to high throughput, and continuous monitoring of P. aeruginosa viability is achievable in the kinetic in vitro models without interference with the cell viability.  相似文献   

8.
Cancer cell spheroids present a relevant in vitro model of avascular tumors for anti-cancer drug testing applications. A detailed protocol for producing both mono-culture and co-culture spheroids in a high throughput 96-well plate format is described in this work. This approach utilizes an aqueous two-phase system to confine cells into a drop of the denser aqueous phase immersed within the second aqueous phase. The drop rests on the well surface and keeps cells in close proximity to form a single spheroid. This technology has been adapted to a robotic liquid handler to produce size-controlled spheroids and expedite the process of spheroid production for compound screening applications. Spheroids treated with a clinically-used drug show reduced cell viability with increase in the drug dose. The use of a standard micro-well plate for spheroid generation makes it straightforward to analyze viability of cancer cells of drug-treated spheroids with a micro-plate reader. This technology is straightforward to implement both robotically and with other liquid handling tools such as manual pipettes.  相似文献   

9.
10.
11.
The miniaturization of gene transfer assays to either 384- or 1536-well plates greatly economizes the expense and allows much higher throughput when transfecting immortalized and primary cells compared with more conventional 96-well assays. To validate the approach, luciferase and green fluorescent protein (GFP) reporter gene transfer assays were developed to determine the influence of cell seeding number, transfection reagent to DNA ratios, transfection time, DNA dose, and luciferin dose on linearity and sensitivity. HepG2, CHO, and NIH 3T3 cells were transfected with polyethylenimine (PEI)–DNA in both 384- and 1536-well plates. The results established optimal transfection parameters in 384-well plates in a total assay volume of 35 μl and in 1536-well plates in a total assay volume of 8 μl. A luciferase assay performed in 384-well plates produced a Z′ score of 0.53, making it acceptable for high-throughput screening. Primary hepatocytes were harvested from mouse liver and transfected with PEI DNA and calcium phosphate DNA nanoparticles in 384-well plates. Optimal transfection of primary hepatocytes was achieved on as few as 250 cells per well in 384-well plates, with CaPO4 proving to be 10-fold more potent than PEI.  相似文献   

12.
Cell viability assays represent an important technology in modern cell biology, drug discovery and biotechnology, where currently there is a high demand for simple, sensitive and cost-effective screening methods. We have developed a new methodology and associated tools for cell-based screening assays, which are based on the measurement of the rates of oxygen uptake in cells by luminescence quenching. Sealable microchamber devices matching the footprint of a standard 96-well plate were developed and used in conjunction with long-decay phosphorescent oxygen probes. These devices permit cell non-invasive, real-time monitoring of cellular respiration and a rapid, one-step, kinetic assessment of multiple samples for cell viability, drug/effector action. These assays can be carried out on conventional fluorescence plate readers, they are suitable for different types of cells, including adherent and slow-respiring cells, require small sample volumes and cell numbers, and are amenable for high throughput screening. Monitoring of as little as 300 mammalian cells in 3 microl volume has been demonstrated.  相似文献   

13.
Several production lots of Anistreplase (Eminase) were assayed for potency by either two fibrin plate assays or a clot lysis assay performed in 96-well microtiter plates. The 96-well plate assay yielded comparable data to the fibrin plate assays and had the advantage of greater efficiency with respect to both time and reagents. As a result the newer method appears to be a suitable alternative to the fibrin plate assays for lot release of Anistreplase.  相似文献   

14.
Studies of drug toxicity, toxicologic structure-function relationships, screening of idiosyncratic drug reactions, and a variety of cytotoxic events and cellular functions in immunology and cell biology require the sensitive and rapid processing of often large numbers of cell samples. This report describes the development of a high-sensitivity, high-throughput viability assay based on (a) the carboxyfluorescein derivative 2'-7'-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) as a vital dye, (b) instrumentation capable of processing multiple small (less than 100 cells) samples, and (c) a 96-well unidirectional vacuum filtration plate. Double staining of cultured peripheral blood mononuclear cells with BCECF and propidium iodide (PI) showed no overlap between PI+ (nonviable) and BCECF+ (viable) cells by flow cytometric analysis. Optimal conditions were developed for dye loading and minimizing physical cell damage and fluorescence quench during the assay procedure. The ratio of BCECF fluorescence to internal standard fluorescent particles was linear from 40 to greater than 20,000 cells with a signal:noise ratio of approximately 3 at 40 cells/well. Sulfamethoxazole hydroxylamine (SMX-HA) was used as a model toxic drug metabolite to explore the validity of the BCECF procedure. SMX-HA, but not its parent compound sulfamethoxazole, resulted in a dose dependent loss of cellular fluorescence and the parallel accumulation of PI+ nonviable cells. When compared to the currently used tetrazolium dye reduction viability assay, the BCECF method was 3-fold more sensitive, greater than 10-fold faster, and required 1/10-1/100 the cell numbers.  相似文献   

15.
Cell-based assays are more complex than cell-free test systems but still reflect a highly artificial cellular environment. Incorporation of organotypic 3-dimensional (3-D) culture systems into mainstream drug development processes is increasingly discussed but severely limited by complex methodological requirements. The objective of this study was to explore a panel of standard assays to provide an easy-handling, standardized protocol for rapid routine analysis of cell survival in multicellular tumor spheroid-based antitumor drug testing. Spheroids of 2 colon carcinoma cell lines were characterized for evaluation. One of the assay systems tested could reliably be used to determine cell viability in spheroids. The authors verified that the acid phosphatase assay (APH) is applicable for single spheroids in 96-well plates, does not require spheroid dissociation, and is linear and highly sensitive for HT29 and HCT-116 spheroids up to diameters of 650 microm and 900 microm, consisting of 40,000 and 80,000 cells, respectively. Treatment of HT29 and HCT-116 cells with 5-fluorouracil, Irinotecan, and C-1311 revealed critically reduced drug efficacies in 3-D versus monolayer culture, which is discussed in light of literature data. The experimental protocol presented herein is a small but substantial contribution to the establishment of sophisticated 3-D in vitro systems in the antitumor drug screening scenario.  相似文献   

16.
Fungal cell wall synthesis is essential for viability, requiring the activity of genes involved in environmental sensing, precursor synthesis, transport, secretion, and assembly. This multitude of potential targets, the availability of known agents targeting this pathway, and the unique nature of fungal cell wall synthesis make this pathway an appealing target for drug discovery. Here we describe the adaptation of an assay monitoring cell wall synthesis for high-throughput screening. The assay requires fungal cell growth, in the presence of the test compound, for 3 h before the cells are subjected to osmotic shock in the presence of a dye that stains DNA. Miniaturization of the assay to a 384-well plate format and removing a mechanical transfer led to subtle changes in the assay characteristics. Validation of the assay with a library of known pharmacologically active agents has identified a number of different classes of compounds that are active in this assay, causing aberrant cell wall morphology and in many cases the inhibition of fungal cell growth.  相似文献   

17.
Lyme disease caused by Borrelia burgdorferi is the most common tick-borne disease in the US and Europe. Unlike most bacteria, measurements of growth and viability of B. burgdorferi are challenging. The current B. burgdorferi viability assays based on microscopic counting and PCR are cumbersome and tedious and cannot be used in a high throughput format. Here, we evaluated several commonly used viability assays including MTT and XTT assays, fluorescein diacetate assay, Sytox Green/Hoechst 33342 assay, the commercially available LIVE/DEAD BacLight assay, and SYBR Green I/PI assay by microscopic counting and by automated 96-well plate reader for rapid viability assessment of B. burgdorferi. We found that the optimized SYBR Green I/PI assay based on green to red fluorescence ratio is superior to all the other assays for measuring the viability of B. burgdorferi in terms of sensitivity, accuracy, reliability, and speed in automated 96-well plate format and in comparison with microscopic counting. The BSK-H medium which produced a high background for the LIVE/DEAD BacLight assay did not affect the SYBR Green I/PI assay, and the viability of B. burgdorferi culture could be directly measured using a microtiter plate reader. The SYBR Green I/PI assay was found to reliably assess the viability of planktonic as well as biofilm B. burgdorferi and could be used as a rapid antibiotic susceptibility test. Thus, the SYBR Green I/PI assay provides a more sensitive, rapid and convenient method for evaluating viability and antibiotic susceptibility of B. burgdorferi and can be used for high-throughput drug screens.  相似文献   

18.
Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications.  相似文献   

19.
A telomerase assay has been developed for high-throughput screening in 96-well microtiter plates. A crude cell lysate which adds telomere repeats to a biotinylated DNA primer is the source of telomerase. The telomerase-extended primer is hybridized to a digoxigenin-labeled telomere antisense DNA probe. The hybrid is further processed by enzyme-linked immunosorbent assay (ELISA) as follows. The biotinylated hybrid is captured on streptavidin-coated microtiter plates. The immobilized hybrid is probed with alkaline phosphatase-antidigoxigenin and detected via chemiluminescent readout. The limit of detection of a chemically synthesized tetra-telomere repeat was about 10 attomoles. Apparent telomerase activity was detected in lysates of 293T cells. The signal to background for the assay (ratio of signal for the complete assay mixture divided by the signal for the assay mixture without primer) was around 10. An automated system that performed unattended runs of up to 17 96-well microtiter plates in 8h was constructed.  相似文献   

20.
Screens for cytostasis/cytoxicity have considerable value for the discovery of therapeutic agents and the investigation of the biology of apoptosis. For instance, genetic screens for proteins, protein fragments, peptides, RNAs, or chemicals that kill tissue culture cells may aid in identifying new cancer therapeutic targets. A microplate assay for cell death is needed to achieve throughputs sufficient to sift through thousands of agents from expression or chemical libraries. The authors describe a homogeneous assay for cell death in tissue culture cells compatible with 96- or 384-well plates. In combination with a previously described system for retroviral packaging and transduction, nearly 6000 expression library clones could be screened per week in a 96-well plate format. The screening system may also prove useful for chemical screens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号