首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ebben, WP, Fauth, ML, Garceau, LR, and Petushek, EJ. Kinetic quantification of plyometric exercise intensity. J Strength Cond Res 25(12): 3288-3298, 2011-Quantification of plyometric exercise intensity is necessary to understand the characteristics of these exercises and the proper progression of this mode of exercise. The purpose of this study was to assess the kinetic characteristics of a variety of plyometric exercises. This study also sought to assess gender differences in these variables. Twenty-six men and 23 women with previous experience in performing plyometric training served as subjects. The subjects performed a variety of plyometric exercises including line hops, 15.24-cm cone hops, squat jumps, tuck jumps, countermovement jumps (CMJs), loaded CMJs equal to 30% of 1 repetition maximum squat, depth jumps normalized to the subject's jump height (JH), and single leg jumps. All plyometric exercises were assessed with a force platform. Outcome variables associated with the takeoff, airborne, and landing phase of each plyometric exercise were evaluated. These variables included the peak vertical ground reaction force (GRF) during takeoff, the time to takeoff, flight time, JH, peak power, landing rate of force development, and peak vertical GRF during landing. A 2-way mixed analysis of variance with repeated measures for plyometric exercise type demonstrated main effects for exercise type and all outcome variables (p ≤ 0.05) and for the interaction between gender and peak vertical GRF during takeoff (p ≤ 0.05). Bonferroni-adjusted pairwise comparisons identified a number of differences between the plyometric exercises for the outcome variables assessed (p ≤ 0.05). These findings can be used to guide the progression of plyometric training by incorporating exercises of increasing intensity over the course of a program.  相似文献   

2.
The aim of this study was to investigate the relationship between reactive strength in a vertical and a horizontal drop jump (DJ). Subjects (n = 28) with previous jump training experience, performed 6 vertical DJs and 6 horizontal DJs from a 0.4-m box. Contact time, height jumped, distance jumped, and reactive strength index (RSI) were calculated and analyzed. Typical error measurements (TEMCV%) and intraclass correlations (ICCs) were used to assess the intrasubject reliability. Relationships between jumps and within jumps of the aforementioned variables were assessed using ICCs. The ICC (r > 0.789) and the TEMCV% (<10%) indicated good reliability for both vertical and horizontal DJs across each variable. Contact time showed no relationship between jumps (r = 0.222) and had no effect on the vertical DJ height (r = 0.152) or horizontal DJ distance (r = 0.261). The RSI correlation (r = 0.533) indicated a large relationship between reactive ability in the horizontal DJ and the vertical DJ. Contact times were significantly lower in vertical DJs compared with horizontal DJs (p < 0.0001). This study indicated that horizontal DJs are reliable and may be better used to train reactive movements that do not require brief contact times.  相似文献   

3.
Because the intensity of plyometric exercises usually is based simply upon anecdotal recommendations rather than empirical evidence, this study sought to quantify a variety of these exercises based on forces placed upon the knee. Six National Collegiate Athletic Association Division I athletes who routinely trained with plyometric exercises performed depth jumps from 46 and 61 cm, a pike jump, tuck jump, single-leg jump, countermovement jump, squat jump, and a squat jump holding dumbbells equal to 30% of 1 repetition maximum (RM). Ground reaction forces obtained via an AMTI force plate and video analysis of markers placed on the left hip, knee, lateral malleolus, and fifth metatarsal were used to estimate rate of eccentric force development (E-RFD), peak ground reaction forces (GRF), ground reaction forces relative to body weight (GRF/BW), knee joint reaction forces (K-JRF), and knee joint reaction forces relative to body weight (K-JRF/BW) for each plyometric exercise. One-way repeated measures analysis of variance indicated that E-RFD, K-JRF, and K-JRF/BW were different across the conditions (p < 0.05), but peak GRF and GRF/BW were not (p > 0.05). Results indicate that there are quantitative differences between plyometric exercises in the rate of force development during landing and the forces placed on the knee, though peak GRF forces associated with landing may not differ.  相似文献   

4.
The purpose of this study was to evaluate the inter-device reliability of three VERT devices (Mayfonk Athletic, Florida, USA) when worn on the waist (W), left-hip (LH), and right-hip (RH) during single- and double-leg counter movement jumps (CMJ) in collegiate athletes. Thirty-two female and twenty-eight male NCAA Division II athletes (n = 60) participated in the present study. Jump height (JH) values for double-leg CMJs were analyzed by each device using a one-way repeated measures ANOVA whereas a 2 (jump leg) x 3 (wear location) repeated measures ANOVA was employed to evaluate single-leg CMJs. Reliability of the VERT devices were based upon intraclass correlation coefficients (ICC). Double-leg CMJs revealed an excellent ICC between all three VERT devices (ICC = 0.969). However, JH for RH and LH (45.69 ± 9.84 and 45.82 ± 10.45 cm, respectively) were on average lower than W (50.44 ± 12.37cm; both p < 0.001). The ICCs were excellent for right- and left-leg CMJs (ICC = 0.939 and 0.941, respectively). However, an interaction was observed (p < 0.001). No differences existed for left- or right-leg when VERT was worn on the waist. However, JH was higher when VERT devices were worn on the opposite hip of the jump leg (i.e., LH>RH for right-leg CMJs; RH>LH for leftleg CMJs; all p < 0.001). Results suggest that LH and RH are interchangeable for double-leg CMJs, but not with waist despite excellent reliability. In addition, all wear locations provided excellent ICCs for single-leg CMJs. However, waist provides more consistent JH values for right- and left-leg CMJs while RH and LH show more variability.  相似文献   

5.
Plyometric training is a popular method by which athletes may increase power and explosiveness. However, plyometric training is considered a highly intense and potentially damaging activity particularly if practiced by the novice individual or if overdone. The purpose of this study was to compare vertical jump performance after land- and aquatic-based plyometric training. A convenience sample of 21 active, college-age (24 +/- 2.5 years) men were randomly assigned to 1 of 3 groups: group I, aquatic; group II, land; and group III, control. Training for the AQ and LN groups consisted of a 10-minute warm-up followed by 3 sets of 15 squat jumps, side hops, and knee-tuck jumps separated by 1-minute rests. The aquatic group performed the exercises in knee-level water adjusted to parallel the axis of the knee joint (+1 in.). The land group performed identical plyometric exercises on land. The control group engaged in no training. Participants trained twice a week for 6 weeks, and all training sessions were monitored. Pre- and post-test data were collected on maximum vertical jump height. A 2x3 analysis of variance with repeated measures was used to compare vertical jump height among the 3 groups. Results suggested that the aquatic- and land-based groups significantly (p < 0.05) outperformed the control group in the vertical jump. No significant difference was found in vertical jump performance between the aquatic- and land-based groups. It was concluded that aquatic training resulted in similar training effects as land-based training, with a possible reduction in stress due to the reduction of impact afforded by the buoyancy and resistance of the water upon landing.  相似文献   

6.
The purpose of this study was to evaluate the immediate influence of eccentric muscle action on vertical jump performance in athletes performing sports with a high demand of explosive force development. In this randomized, controlled crossover trial, 13 Swiss elite athletes (national team members in ski jump, ski alpine, snowboard freestyle and alpine, ski freestyle, and gymnastics) with a mean age of 22 years (range 20-28) were randomized into 2 groups. After a semistandardized warm-up, group 1 did 5 jumps from a height of 60 cm, landing with active stabilization in 90 degrees knee flexion. One minute after these modified drop jumps, they performed 3 single squat jumps (SJ) and 3 single countermovement jumps (CMJ) on a force platform. The athletes repeated the procedure after 1 hour without the modified drop jumps. In a crossover manner, group 2 did the first warm-up without and the second warm-up with the modified drop jumps. Differences of the performance (jump height and maximal power) between the different warm-ups were the main outcomes. The mean absolute power and absolute height (without drop jumps) were CMJ 54.9 W.kg(-1) (SD = 4.1), SJ 55.0 W.kg(-1) (SD = 5.1), CMJ 44.1 cm (SD = 4.1), and SJ 40.8 cm (SD = 4.1). A consistent tendency for improvement with added drop jumps to the warm-up routine was observed compared with warm-up without drop jumps: maximal power CMJ +1.02 W.kg(-1) (95% confidence interval [CI] = +0.03 to +2.38), p = 0.045; maximal power SJ +0.8 W.kg(-1) (95% CI = -0.34 to +2.02), p = 0.148; jump height CMJ +0.48 cm (95% CI = -0.26 to +1.2), p = 0.182; SJ +0.73 cm (95% CI = -0.36 to +1.18), p = 0.169. Athletes could add modified drop jumps to the warm-up before competitions to improve explosive force development.  相似文献   

7.
Failed jump landings represent a key mechanism of musculoskeletal trauma. It has been speculated that cognitive dual-task loading during the flight phase may moderate the injury risk. This study aimed to explore whether increased visual distraction can compromise landing biomechanics. Twenty-one healthy, physically active participants (15 females, 25.8 ± 0.4 years) completed a series of 30 counter-movement jumps (CMJ) onto a capacitive pressure platform. In addition to safely landing on one leg, they were required to memorize either one, two or three jersey numbers shown during the flight phase (randomly selected and equally balanced over all jumps). Outcomes included the number of recall errors as well as landing errors and three variables of landing kinetics (time to stabilization/TTS, peak ground reaction force/pGRF, length of the centre of pressure trace/COPT). Differences between the conditions were calculated using the Friedman test and the post hoc Bonferroni-Holm corrected Wilcoxon test. Regardless of the condition, landing errors remained unchanged (p = .46). In contrast, increased visual distraction resulted in a higher number of recall errors (chi2 = 13.3, p = .001). Higher cognitive loading, furthermore, appeared to negatively impact mediolateral COPT (p < .05). Time to stabilization (p = .84) and pGRF (p = .78) were unaffected. A simple visual distraction in a controlled experimental setting is sufficient to adversely affect landing stability and task-related short-term memory during CMJ. The ability to precisely perceive the environment during movement under time constraints may, hence, represent a new injury risk factor and should be investigated in a prospective trial.  相似文献   

8.
The drop vertical jump is a popular plyometric exercise. Two distinct techniques are commonly used to initiate the drop vertical jump. With the ‘step-off’ technique, athletes step off a raised platform with their dominant limb, while their non-dominant limb remains on the platform. In contrast, with the ‘drop-off’ technique, athletes lean forward and drop off the platform, with both feet leaving the platform more simultaneously. The purpose of this study was to compare landing and jumping kinetics, inter-limb kinetic symmetry, and jump performance when individuals used the step-off and drop-off techniques, and to examine whether potential differences between these techniques are affected by platform height. Sixteen subjects completed drop vertical jumps with the drop-off and step-off techniques, from relatively low and high platform heights. Ground reactions forces were recorded for the dominant and non-dominant limbs during the land-and-jump phase of the drop vertical jump. Subjects demonstrated greater inter-limb asymmetry in peak impact forces when using the step-off technique, vs. the drop-off technique. This difference between the techniques was consistent across platform heights. The step-off technique appears to result in greater asymmetry in limb loading, which could contribute to the development of neuromuscular asymmetries between the limbs and/or asymmetric landing patterns.  相似文献   

9.
The purpose of this study was to examine the effect of 3 different plyometric training frequencies (e.g., 1 day per week, 2 days per week, 4 days per week) associated with 3 different plyometric training volumes on maximal strength, vertical jump performance, and sprinting ability. Forty-two students were randomly assigned to 1 of 4 groups: control (n = 10, 7 sessions of drop jump (DJ) training, 1 day per week, 420 DJs), 14 sessions of DJ training (n = 12, 2 days per week, 840 DJs), and 28 sessions of DJ training (n = 9, 4 days per week, 1680 DJs). The training protocols included DJ from 3 different heights 20, 40, and 60 cm. Maximal strength (1 repetition maximum [1RM] and maximal isometric strength), vertical height in countermovement jumps and DJs, and 20-m sprint time tests were carried out before and after 7 weeks of plyometric training. No significant differences were observed among the groups in pre-training in any of the variables tested. No significant changes were observed in the control group in any of the variables tested at any point. Short-term plyometric training using moderate training frequency and volume of jumps (2 days per week, 840 jumps) produces similar enhancements in jumping performance, but greater training efficiency (approximately 12% and 0.014% per jump) compared with high jumping (4 days per week, 1680 jumps) training frequency (approximately 18% and 0.011% per jump). In addition, similar enhancements in 20-m-sprint time, jumping contact times and maximal strength were observed in both a moderate and low number of training sessions per week compared with high training frequencies, despite the fact that the average number of jumps accomplished in 7S (420 jumps) and 14S (840 jumps) was 25 and 50% of that performed in 28S (1680 jumps). These observations may have considerable practical relevance for the optimal design of plyometric training programs for athletes, given that a moderate volume is more efficient than a higher plyometric training volume.  相似文献   

10.
The purpose of this study was to investigate the motor unit activation of the quadriceps (Q), hamstring (H), and gastrocnemius (G) muscle groups during a variety of plyometric exercises to further understand the nature of these exercises. Twenty-three athletes volunteered to perform randomly ordered plyometric exercises, thought to cover a continuum of intensity levels, including two-foot ankle hops; 15-cm cone hops; tuck, pike, and box jumps; one- and two-leg vertical jump and reach; squat jumps with approximately 30% of their 1RM squat load; and 30- and 61-cm depth jumps. Integrated electromyographic data were analyzed for each exercise using a one-way repeated-measures ANOVA. Results revealed significant main effects for the Q when all subjects are analyzed, as well as for separate analysis of men, women, subjects with vertical jumps greater than 50 cm, and those with vertical jumps less than or equal to 50 cm (p < or = 0.05). Significant main effects were also found for the G muscle group in the analysis of all subjects, as well as for men and subjects with vertical jumps greater than 50 cm (p < or = 0.05). No significant main effects were found for the H muscle group. Pairwise comparisons revealed a variety of differences among plyometric exercises. In some cases, plyometrics previously reported to be of high intensity, such as the depth jump, yielded relatively little motor unit recruitment compared with exercises typically thought to be of low intensity. Results can assist the practitioner in creating plyometric programs based on the nature of the motor unit recruitment.  相似文献   

11.
Plyometric training in children, including different types of jumps, has become common practice during the last few years in different sports, although there is limited information about the adaptability of children with respect to different loads and the differences in performance between various jump types. The purpose of this study was to examine the effect of gender and training background on the optimal drop jump height of 9- to 11-year-old children. Sixty prepubertal (untrained and track and field athletes, boys and girls, equally distributed in each group [n = 15]), performed the following in random order: 3 squat jumps, 3 countermovement jumps (CMJs) and 3 drop jumps from heights of 10, 20, 30, 40, and 50 cm. The trial with the best performance in jump height of each test was used for further analysis. The jump type significantly affected the jump height. The jump height during the CMJ was the highest among all other jump types, resulting in advanced performance for both trained and untrained prepubertal boys and girls. However, increasing the dropping height did not change the jumping height or contact time during the drop jump. This possibly indicates an inability of prepubertal children to use their stored elastic energy to increase jumping height during drop jumps, irrespective of their gender or training status. This indicates that children, independent of gender and training status, have no performance gain during drop jumps from heights up to 50 cm, and therefore, it is recommended that only low drop jump heights be included in plyometric training to limit the probability of sustaining injuries.  相似文献   

12.
The purpose of this study was to evaluate the effects of sprint training on muscle function and dynamic athletic performance and to compare them with the training effects induced by standard plyometric training. Male physical education students were assigned randomly to 1 of 3 groups: sprint group (SG; n = 30), plyometric group (PG; n = 30), or control group (CG; n = 33). Maximal isometric squat strength, squat- and countermovement jump (SJ and CMJ) height and power, drop jump performance from 30-cm height, and 3 athletic performance tests (standing long jump, 20-m sprint, and 20-yard shuttle run) were measured prior to and after 10 weeks of training. Both experimental groups trained 3 days a week; SG performed maximal sprints over distances of 10-50 m, whereas PG performed bounce-type hurdle jumps and drop jumps. Participants in the CG group maintained their daily physical activities for the duration of the study. Both SG and PG significantly improved drop jump performance (15.6 and 14.2%), SJ and CMJ height ( approximately 10 and 6%), and standing long jump distance (3.2 and 2.8%), whereas the respective effect sizes (ES) were moderate to high and ranged between 0.4 and 1.1. In addition, SG also improved isometric squat strength (10%; ES = 0.4) and SJ and CMJ power (4%; ES = 0.4, and 7%; ES = 0.4), as well as sprint (3.1%; ES = 0.9) and agility (4.3%; ES = 1.1) performance. We conclude that short-term sprint training produces similar or even greater training effects in muscle function and athletic performance than does conventional plyometric training. This study provides support for the use of sprint training as an applicable training method of improving explosive performance of athletes in general.  相似文献   

13.
The aim of this study was to evaluate the reliability and validity of a repeated modified agility test (RMAT) to assess anaerobic power and explosiveness. Twenty-seven subjects (age: 20.2 ± 0.9 years, body mass: 66.1 ± 6.0 kg, height: 176 ± 6 cm, and body fat: 11.4 ± 2.6%) participated in this study. After familiarization, subjects completed the RMAT consisting of 10 × 20-m maximal running performances (moving in forward, lateral, and backward) with ~25-second recovery between each run. Ten subjects performed the RMAT twice separated by at least 48 hours to evaluate relative and absolute reliability and usefulness of the test. The criterion validity of the RMAT was determined by examining the relationship between RMAT indices and the Wingate anaerobic test (WAT) performances and both vertical and horizontal jumps. Reliability of the total time (TT) and peak time (PT) of the RMAT was very good, with intraclass correlation coefficient > 0.90 and SEM < 5% and low bias. The usefulness of TT and PT of the RMAT was rated as "good" and "OK," respectively. The TT of the RMAT had significant correlations with the WAT (peak power: r = -0.44; mean power: r = -0.72), vertical jumps (squat jump: r = -0.50; countermovement jump: r = -0.61; drop jump (DJ): r = -0.55; DJ with dominant leg: r = -0.72; DJ with nondominant leg: r = -0.53) and 5 jump test (r = -0.56). These findings suggest that the RMAT is a reliable and valid test for assessing anaerobic power and explosiveness in multisprint sport athletes. Consequently, the RMAT is an easily applied, inexpensive field test and can provide coaches and strength and conditioning professionals with relevant information concerning the choice and the efficacy of training programs.  相似文献   

14.
The purpose of this study was to identify alterations in preparatory muscle activation patterns across different drop heights in female athletes. Sixteen female high school volleyball players performed the drop vertical jump from three different drop heights. Surface electromyography of the quadriceps and hamstrings were collected during the movement trials. As the drop height increased, muscle activation of the quadriceps during preparatory phase also increased (p < .05). However, the hamstrings activation showed no similar increases relative to drop height. Female athletes appear to preferentially rely on increased quadriceps activation, without an increase in hamstrings activation, with increased plyometric intensity. The resultant decreased activation ratio of the hamstrings relative to quadriceps before landing may represent altered dynamic knee stability and may contribute to the increased risk of ACL injury in female athletes.  相似文献   

15.
The primary aim of this study was to determine reliability and factorial validity of squat (SJ) and countermovement jump (CMJ) tests. The secondary aim was to compare 3 popular methods for the estimation of vertical jumping height. Physical education students (n = 93) performed 7 explosive power tests: 5 different vertical jumps (Sargent jump, Abalakow's jump with arm swing and without arm swing, SJ, and CMJ) and 2 horizontal jumps (standing long jump and standing triple jump). The greatest reliability among all jumping tests (Cronbach's alpha = 0.97 and 0.98) had SJ and CMJ. The reliability alpha coefficients for other jumps were also high and varied between 0.93 and 0.96. Within-subject variation (CV) in jumping tests ranged between 2.4 and 4.6%, the values being lowest in both horizontal jumps and CMJ. Factor analysis resulted in the extraction of only 1 significant principal component, which explained 66.43% of the variance of all 7 jumping tests. Since all jumping tests had high correlation coefficients with the principal component (r = 0.76-0.87), it was interpreted as the explosive power factor. The CMJ test showed the highest relationship with the explosive power factor (r = 0.87), that is, the greatest factorial validity. Other jumping tests had lower but relatively homogeneous correlation with the explosive power factor extracted. Based on the results of this study, it can be concluded that CMJ and SJ, measured by means of contact mat and digital timer, are the most reliable and valid field tests for the estimation of explosive power of the lower limbs in physically active men.  相似文献   

16.
Complex training has been recommended as a method of incorporating plyometrics with strength training. Some research suggests that plyometric performance is enhanced when performed 3-4 minutes after the strength training set, whereas other studies have failed to find any complex training advantage when plyometrics are performed immediately after the strength training portion of the complex. The purpose of this study was to determine if there is an ergogenic advantage associated with complex training and if there is an optimal time for performing plyometrics after the strength training set. Subjects were 21 NCAA Division I athletes who performed a countermovement vertical jump, a set of 5 repetitions maximum (5 RM) squats, and 5 trials of countermovement vertical jump at intervals of 10 seconds and 1, 2, 3, and 4 minutes after the squat. Jump height and peak ground reaction forces were acquired via a force platform. The pre-squat jump performance was compared with the post-squat jumps. Repeated measures ANOVA determined a difference (p 0.05) was found comparing subsequent jumps (0.72-0.76 m) to the pre-squat condition (0.74 m). When comparing high to low strength individuals, there was no effect on jump performance following the squat (p > 0.05). In conclusion, complex training does not appear to enhance jumping performance significantly and actually decreases it when the jump is performed immediately following the strength training set; however, a nonsignificant trend toward improvement seemed to be present. Therefore to optimize jump performance it appears that athletes should not perform jumps immediately following resistance training. It may be possible that beyond 4 minutes of recovery performance could be enhanced; however, that was not within the scope of the current study.  相似文献   

17.
The aim of the present study was to verify the validity and reliability of the Myotest accelerometric system (Myotest SA, Sion, Switzerland) for the assessment of vertical jump height. Forty-four male basketball players (age range: 9-25 years) performed series of squat, countermovement and repeated jumps during 2 identical test sessions separated by 2-15 days. Flight height was simultaneously quantified with the Myotest system and validated photoelectric cells (Optojump). Two calculation methods were used to estimate the jump height from Myotest recordings: flight time (Myotest-T) and vertical takeoff velocity (Myotest-V). Concurrent validity was investigated comparing Myotest-T and Myotest-V to the criterion method (Optojump), and test-retest reliability was also examined. As regards validity, Myotest-T overestimated jumping height compared to Optojump (p < 0.001) with a systematic bias of approximately 7 cm, even though random errors were low (2.7 cm) and intraclass correlation coefficients (ICCs) where high (>0.98), that is, excellent validity. Myotest-V overestimated jumping height compared to Optojump (p < 0.001), with high random errors (>12 cm), high limits of agreement ratios (>36%), and low ICCs (<0.75), that is, poor validity. As regards reliability, Myotest-T showed high ICCs (range: 0.92-0.96), whereas Myotest-V showed low ICCs (range: 0.56-0.89), and high random errors (>9 cm). In conclusion, Myotest-T is a valid and reliable method for the assessment of vertical jump height, and its use is legitimate for field-based evaluations, whereas Myotest-V is neither valid nor reliable.  相似文献   

18.
Elastic band assisted and resisted jump training may be a novel way to develop lower-body power. The purpose of this investigation was to (a) determine the kinetic differences between assisted, free, and resisted countermovement jumps and (b), investigate the effects of contrast training using either assisted, free, or resisted countermovement jump training on vertical jump performance in well-trained athletes. In part 1, 8 recreationally trained men were assessed for force output, relative peak power (PP·kg(-1)) and peak velocity during the 3 types of jump. The highest peak force was achieved in the resisted jump method, while PP·kg(-1) and peak velocity were greatest in the assisted jump. Each type of jump produced a different pattern of maximal values of the variables measured, which may have implications for developing separate components of muscular power. In part 2, 28 professional rugby players were assessed for vertical jump height before and after 4 weeks of either assisted (n = 9), resisted (n = 11), or free (n = 8) countermovement jump training. Relative to changes in the control group (1.3 ± 9.2%, mean ± SD), there were clear small improvements in jump height in the assisted (6.7 ± 9.6%) and the resisted jump training group (4.0 ± 8.8%). Elastic band assisted and resisted jump training are both effective methods for improving jump height and can be easily implemented into current training programs via contrast training methods or as a part of plyometric training sessions. Assisted and resisted jump training is recommended for athletes in whom explosive lower-body movements such as jumping and sprinting are performed as part of competition.  相似文献   

19.
In studies of physical performance comprising muscle strength and power, a vertical jump is a test method that frequently is used. It is important to have access to accurate measuring tools providing data with high reproducibility. Studies have shown that body composition also may play an important part in physical performance. The purpose of this study was to determine test-retest reliability for 3 different kinds of vertical jumps and to correlate jump height with body composition. Thirty-four normally trained subjects (women n = 17) between 18 and 25 years participated. Test-retest, on 3 kinds of vertical jumps, was performed with a median of 7 days between jumps. Methods used were a countermovement jump (CMJ) on a contact mat, with and without arm swing, and an Abalakow jump (AJ) using measuring tape, with arm swing. Body composition was assessed with the use of bioelectric impedance analysis. The results showed that high intraclass correlation coefficients (ICCs) were observed between testing occasions for all 3 vertical jumps (ICC between 0.48 and 0.88). The AJ in women presented the lowest ICC. Also the correlation between CMJ and AJ was high (rs = 0.88). Moderate-to-high correlations could be shown between body composition and CMJ in women (rs = -0.57-0.76). In conclusion, very high test-retest reliability for CMJ on a contact mat was found. For the AJ using a measuring tape, ICC were overall high, but a moderate nonsignificant ICC were found in women, indicating poor reproducibility. The data from the CMJ and AJ may be compared if approximately 25% of the AJ value is subtracted. In practice, this means that vertical jump tests have high reproducibility and can be used as measures of power development.  相似文献   

20.
The purpose of this study was to examine the effects of a 6-week, periodized squat training program, with or without whole-body low-frequency vibration (WBLFV), on jump performance. Males ranged in age from 20 to 30 years and were randomized into groups that did squat training with (SQTV, n = 13) or without (SQT, n = 11) vibration, or a control group (CG, n = 6). Measures of jump height (cm), peak power (Pmax), Pmax per kilogram of body mass (Pmax/kg), and mean power were recorded during 30-cm depth jumps and 20-kg squat jumps at weeks 1 (pretraining), 3 (midtraining), and 7 (posttraining). No significant group differences were seen for 30-cm depth jump height between weeks 1 and 7 (p > 0.05). Trial three (W7) measures were greater than those for trial two (W3) and trial one (W1) (p < 0.05). Significant group differences were seen for 20-kg squat jump height, with SQTV > SQT between weeks 1 and 7 (p < 0.05). Significant trial differences were seen, with W7 > W3 > W1 (p < 0.05) as well as for 30-cm depth jump Pmax percent change (W7 > W3 and W1 p < 0.05)). A significant trial effect was seen for 20-kg squat jump Pmax (W7 > W1, p < 0.05) and 20-kg squat jump Pmax/kg percent change (W7 > W3 > W1, p < 0.05). The addition of vibration to SQTV seemed to facilitate Pmax and mean power adaptation for depth jumps and Pmax for squat jumps, although not significantly (p > 0.05). Stretch reflex potentiation and increased motor unit synchronization and firing rates may account for the trends seen. Baseline squat strength, resistance training experience, and amplitude, frequency, and duration of application of WBLFV seem to be important factors that need to be controlled for.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号