首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Noor MA 《Genetical research》2005,85(2):119-125
Divergence between species in regulatory pathways may contribute to hybrid incompatibilities such as sterility. Consistent with this idea, genes involved in male fertility often evolve faster than most other genes both in amino acid sequence and in expression. Previously, we identified a panel of male-specific genes under-expressed in sterile male hybrids of Drosophila simulans and D. mauritiana relative to pure species, and we showed that this under-expression is associated with infertility. In a preliminary effort to assess the generalities in the patterns of evolution of these genes, I examined patterns of mRNA expression in three of these genes in sterile F 1 hybrid males of D. pseudoobscura and D. persimilis . F 1 hybrid males bearing D. persimilis X chromosomes under-expressed all these genes relative to the parental species, while hybrids bearing D. pseudoobscura X chromosomes under-expressed two of these three genes. Interestingly, the third gene, CG5762 , has undergone extensive amino acid evolution within the D. pseudoobscura species group, possibly driven by positive natural selection. We conclude that some of the same genes exhibit disruptions in expression within each of the two species groups, which could suggest commonalities in the regulatory architecture of sterility in these groups. Alternative explanations are also considered.  相似文献   

3.
The Dobzhansky-Muller model denotes incompatible gene interactions between diverging populations/species and is recognized as the basis of postzygotic reproductive isolation. Little is known about the molecular nature of such gene interactions. We have carried out comparative gene expression analyses in the testes of 3 closely related species of the Drosophila melanogaster subgroup and their hybrids (all of which are sterile). We show that in hybrids 1) a higher proportion of male-biased genes (i.e., genes with a higher level of expression in males) are underexpressed (or not expressed) compared with non-sex-biased genes, 2) the majority of the underexpressed genes appear to be under stabilizing selection by virtue of showing similar levels of expression in the parental species, and only a small proportion of genes show signs of directional selection, 3) very few of the misexpressed genes are shared between species pairs, suggesting that there may not be a "common" set of "speciation genes," and 4) expression of non-testes-specific genes is observed in the testes of interspecific hybrids, and the number of such genes is positively correlated with divergence time. These results suggest that gene regulation divergence of sex- and reproduction-related genes is a major contributor to the evolution of Dobzhansky-Muller incompatibilities between species of Drosophila.  相似文献   

4.
Male sex genes have shown a pattern of rapid interspecies divergence at both the coding and gene expression level. A common outcome from crosses between closely-related species is hybrid male sterility. Phenotypic and genetic studies in Drosophila sterile hybrid males have shown that spermatogenesis arrest is postmeiotic with few exceptions, and that most misregulated genes are involved in late stages of spermatogenesis. Comparative studies of gene regulation in sterile hybrids and parental species have mainly used microarrays providing a whole genome representation of regulatory problems in sterile hybrids. Real-time PCR studies can reject or reveal differences not observed in microarray assays. Moreover, differences in gene expression between samples can be dependant on the source of RNA (e.g., whole body vs. tissue). Here we survey expression in D. simulans, D. mauritiana and both intra and interspecies hybrids using a real-time PCR approach for eight genes expressed at the four main stages of sperm development. We find that all genes show a trend toward under expression in the testes of sterile hybrids relative to parental species with only the two proliferation genes (bam and bgcn) and the two meiotic class genes (can and sa) showing significant down regulation. The observed pattern of down regulation for the genes tested can not fully explain hybrid male sterility. We discuss the down regulation of spermatogenesis genes in hybrids between closely-related species within the contest of rapid divergence experienced by the male genome, hybrid sterility and possible allometric changes due to subtle testes-specific developmental abnormalities.  相似文献   

5.
Recent studies have identified genes associated with hybrid sterility and other hybrid dysfunctions, but the consequences of introgressions of these speciation genes are often poorly understood. Previously, we identified a panel of genes that are underexpressed in sterile male hybrids of Drosophila simulans and D. mauritiana relative to pure species. Here, we build on this reverse-genetics approach to demonstrate that the underexpression of at least five of these genes in hybrids is associated with hybrid sterility and that these five genes are coordinately regulated. We map one upstream regulator of these genes to a region previously shown to harbor one or more factors causing hybrid sterility. Finally, we show that the genes underexpressed in hybrids are often highly conserved, as might be predicted for downstream targets of the genetic changes that cause hybrid sterility. This approach integrates forward genetics with reverse genetics to show a proximate consequence of the introgression of particular hybrid sterility-conferring regions between species: underexpression of genes necessary for normal spermatogenesis.[Reviewing Editor: Martin Kreitman]  相似文献   

6.
Jacob C. Cooper 《Fly》2016,10(3):142-148
Uncovering the genetic and molecular basis of barriers to gene flow between populations is key to understanding how new species are born. Intrinsic postzygotic reproductive barriers such as hybrid sterility and hybrid inviability are caused by deleterious genetic interactions known as hybrid incompatibilities. The difficulty in identifying these hybrid incompatibility genes remains a rate-limiting step in our understanding of the molecular basis of speciation. We recently described how whole genome sequencing can be applied to identify hybrid incompatibility genes, even from genetically terminal hybrids. Using this approach, we discovered a new hybrid incompatibility gene, gfzf, between Drosophila melanogaster and Drosophila simulans, and found that it plays an essential role in cell cycle regulation. Here, we discuss the history of the hunt for incompatibility genes between these species, discuss the molecular roles of gfzf in cell cycle regulation, and explore how intragenomic conflict drives the evolution of fundamental cellular mechanisms that lead to the developmental arrest of hybrids.  相似文献   

7.
In most crosses between closely related species of Drosophila, the male hybrids are sterile and show postmeiotic abnormalities. A series of gene expression studies using genomic approaches have found significant down regulation of postmeiotic spermatogenesis genes in sterile male hybrids. These results have led some to suggest a direct relationship between down regulation in gene expression and hybrid sterility. An alternative explanation to a cause-and-effect relationship between misregulation of gene expression and male sterility is rapid divergence of male sex regulatory elements leading to incompatible interactions in an interspecies hybrid genome. To test the effect of regulatory divergence in spermatogenesis gene expression, we isolated 35 fertile D. simulans strains with D. mauritiana introgressions in either the X, second or third chromosome. We analyzed gene expression in these fertile hybrid strains for a subset of spermatogenesis genes previously reported as significantly under expressed in sterile hybrids relative to D. simulans. We found that fertile autosomal introgressions can cause levels of gene down regulation similar to that of sterile hybrids. We also found that X chromosome heterospecific introgressions cause significantly less gene down regulation than autosomal introgressions. Our results provide evidence that rapid male sex gene regulatory divergence can explain misexpression of spermatogenesis genes in hybrids.  相似文献   

8.
Hybrids between closely related species are often sterile or inviable as a consequence of failed interactions between alleles from the different species. Most genetic studies have focused on localizing the alleles associated with these failed interactions, but the mechanistic/biochemical nature of the failed interactions is poorly understood. This review discusses recent studies that may contribute to our understanding of these failed interactions. We focus on the possible contribution of failures in gene expression as an important contributor to hybrid dysfunctions. Although regulatory pathways that share elements in highly divergent taxa may contribute to hybrid dysfunction, various studies suggest that misexpression may be disproportionately great in regulatory pathways containing rapidly evolving, particularly male-biased, genes. We describe three systems that have been analyzed recently with respect to global patterns of gene expression in hybrids versus pure species, each in Drosophila. These studies reveal that quantitative misexpression of genes is associated with hybrid dysfunction. Misexpression of genes has been documented in sterile hybrids relative to pure species, and variation in upstream factors may sometimes cause the over- or under-expression of genes resulting in hybrid sterility or inviability. Studying patterns of evolution between species in regulatory pathways, such as spermatogenesis, should help in identifying which genes are more likely to be contributors to hybrid dysfunction. Ultimately, we hope more functional genetic studies will complement our understanding of the genetic disruptions leading to hybrid dysfunctions and their role in the origin of species.  相似文献   

9.
10.
Crosses between the semispecies of the Drosophila paulistorum complex produce fertile female but sterile male hybrids. An hypothesis is put forward that the hybrid sterility is in this case a result of discordance between a cytoplasmic symbiont and the genotype of the host. An ultrastructural analysis has been made of the testes of sterile male hybrids between the Andean and the Amazonian, and also other semispecies. Spermatid bundles undergo degenerative changes resulting in the loss of the axial filament complex and of associated mitochondrial derivatives. Numerous single or multiply clustered elements closely resembling Mycoplasma are observed in association with the degenerating spermatid bundles. Similar inclusions are observed also intruding into the wall of the distal parts of the testes and/or vasa deferentia. Some Mycoplasma-like bodies are observed also within the developing spermatids. These organs may be crowded with degenerating bundles and clusters of the Mycoplasma-like bodies. Each body is enclosed in a membrane, and may show a central reticular network and peripheral ribosome-like granules. The testes of the fertile males of the parental stocks reveal the presence of similar Mycoplasma-like inclusions, but not in such profusion.Dedicated to Professor Theodosius Dobzhansky on the occasion of his seventieth birthday, and in gratitude for our introduction to Drosophila paulistorum.  相似文献   

11.
H. Allen Orr 《Genetics》1987,116(4):555-563
The genetic basis of male and female sterility in hybrids of Drosophila pseudoobscura-Drosophila persimilis was studied using backcross analysis. Previous studies indirectly assessed male fertility by measuring testis size; these studies concluded that male sterility results from an X chromosome-autosome imbalance. By directly scoring for the production of motile sperm, male sterility is shown to be largely due to an incompatibility between genes on the X and Y chromosomes of these two species. These species have diverged at a minimum of nine loci affecting hybrid male fertility. Semisterility of hybrid females appears to result from an X chromosome-cytoplasm interaction; the X chromosome thus has the largest effect on sterility in both male and female hybrids. This is apparently the first analysis of the genetic basis of female sterility, or of sterility/inviability affecting both sexes, in an animal hybridization.  相似文献   

12.
Sawamura K  Karr TL  Yamamoto MT 《Genetica》2004,120(1-3):253-260
Interspecific crosses between Drosophila melanogaster and Drosophila simulans usually produce sterile unisexual hybrids. The barrier preventing genetic analysis of hybrid inviability and sterility has been taken away by the discovery of a D. simulans strain which produces fertile female hybrids. D. simulans genes in the cytological locations of 21A1 to 22C1-23B1 and 30F3-31C5 to 36A2-7 have been introgressed into the D. melanogaster genetic background by consecutive backcrosses. Flies heterozygous for the introgression are fertile, while homozygotes are sterile both in females and males. The genes responsible for the sterility have been mapped in the introgression. The male sterility is caused by the synergistic effect of multiple genes, while the female sterility genes have been localized to a 170 kb region (32D2 to 32E4) containing 20 open reading frames. Thus, the female sterility might be attributed to a single gene with a large effect. We have also found that the Lethal hybrid rescue mutation which prevents the inviability of male hybrids from the cross of D. melanogaster females and D. simulans males cannot rescue those carrying the introgression, suggesting that D. simulans genes maybe non-functional in this hybrid genotype. The genes responsible for the inviability have not been separated from the female sterility genes by recombination.  相似文献   

13.
14.
Hybrid male sterility is a common outcome of crosses between different species. Gene expression studies have found that a number of spermatogenesis genes are differentially expressed in sterile hybrid males, compared with parental species. Late‐stage sperm development genes are particularly likely to be misexpressed, with fewer early‐stage genes affected. Thus, a link has been posited between misexpression and sterility. A more recent alternative explanation for hybrid gene misexpression has been that it is independent of sterility and driven by divergent evolution of male‐specific regulatory elements between species (faster male hypothesis). The faster male hypothesis predicts that misregulation of spermatogenesis genes should be independent of sterility and approximately the same in both hybrids, whereas sterility should only affect gene expression in sterile hybrids. To test the faster male hypothesis vs. the effect of sterility on gene misexpression, we analyse spermatogenesis gene expression in different species pairs of the Drosophila phylogeny, where hybrid male sterility occurs in only one direction of the interspecies cross (i.e. unidirectional sterility). We find significant differences among genes in misexpression with effects that are lineage‐specific and caused by sterility or fast male regulatory divergence.  相似文献   

15.
One of the most fundamental questions for understanding the origin of species is why genes that function to cause fertility in a pure-species genetic background fail to produce fertility in a hybrid genetic background. A related question is why the sex that is most often sterile or inviable in hybrids is the heterogametic (usually male) sex. In this survey, we have examined the extent and nature of differences in gene expression between fertile adult males of two Drosophila species and sterile hybrid males produced from crosses between these species. Using oligonucleotide microarrays and real-time quantitative polymerase chain reaction, we have identified and confirmed that differences in gene expression exist between pure species and hybrid males, and many of these differences are quantitative rather than qualitative. Furthermore, genes that are expressed primarily or exclusively in males, including several involved in spermatogenesis, are disproportionately misexpressed in hybrids, suggesting a possible genetic cause for their sterility.  相似文献   

16.
Phadnis N 《Genetics》2011,189(3):1001-1009
Understanding the genetic basis of reproductive isolation between recently diverged species is a central problem in evolutionary genetics. Here, I present analyses of the genetic architecture underlying hybrid male sterility and segregation distortion between the Bogota and USA subspecies of Drosophila pseudoobscura. Previously, a single gene, Overdrive (Ovd), was shown to be necessary but not sufficient for both male sterility and segregation distortion in F(1) hybrids between these subspecies, requiring several interacting partner loci for full manifestation of hybrid phenomena. I map these partner loci separately on the Bogota X chromosome and USA autosomes using a combination of different mapping strategies. I find that hybrid sterility involves a single hybrid incompatibility of at least seven interacting partner genes that includes three large-effect loci. Segregation distortion involves three loci on the Bogota X chromosome and one locus on the autosomes. The genetic bases of hybrid sterility and segregation distortion are at least partially--but not completely--overlapping. My results lay the foundation for fine-mapping experiments to identify the complete set of genes that interact with Overdrive. While individual genes that cause hybrid sterility or inviability have been identified in a few cases, my analysis provides a comprehensive look at the genetic architecture of all components of a hybrid incompatibility underlying F(1) hybrid sterility. Such an analysis would likely be unfeasible for most species pairs due to their divergence time and emphasizes the importance of young species pairs such as the D. pseudoobscura subspecies studied here.  相似文献   

17.
Previous studies have shown widespread conservation of gene expression levels between species of the Drosophila melanogaster subgroup as well as a positive correlation between coding sequence divergence and expression level divergence between species. Meanwhile, large-scale misregulation of gene expression level has been described in interspecific sterile hybrids between D. melanogaster, D. simulans, D. mauritiana, and D. sechellia. Using data from gene expression analysis involving D. simulans, D. melanogaster, and their hybrids, we observed a significant positive correlation between protein sequence divergence and gene expression differences between hybrids and their parental species. Furthermore, we demonstrate that underexpressed misregulated genes in hybrids are evolving more rapidly at the protein sequence level than nonmisregulated genes or overexpressed misregulated genes, highlighting the possible effects of sexual and natural selection as male-biased genes and nonessential genes are the principal gene categories affected by interspecific hybrid misregulation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Carlo G. Artieri and Wilfried Haerty contributed equally to this publication.  相似文献   

18.
Intragenomic conflict, the conflict of interest between different genomic regions within an individual, is proposed as a mechanism driving both the rapid evolution of heterochromatin‐related proteins and the establishment of intrinsic genomic incompatibility between species. Although molecular studies of laboratory model organisms have demonstrated the link between heterochromatin evolution and hybrid abnormalities, we know little about their link in natural systems. Previously, we showed that F1 hybrids between the Japan Sea stickleback and the Pacific Ocean stickleback show hybrid male sterility and found a region responsible for hybrid male sterility on the X chromosome, but did not identify any candidate genes. In this study, we first screened for genes rapidly evolving under positive selection during the speciation of Japanese sticklebacks to find genes possibly involved in intragenomic conflict. We found that the region responsible for hybrid male sterility contains a rapidly evolving gene encoding a heterochromatin‐binding protein TRIM24B. We conducted biochemical experiments and showed that the binding affinity of TRIM24B to a heterochromatin mark found at centromeres and transposons, histone H4 lysine 20 trimethylation (H4K20me3), is reduced in the Japan Sea stickleback. In addition, mRNA expression levels of Trim24b were different between the Japan Sea and the Pacific Ocean testes. Further expression analysis of genes possibly in the TRIM24B‐regulated pathway showed that some gypsy retrotransposons are overexpressed in the F1 hybrid testes. We, therefore, demonstrate that a heterochromatin‐binding protein can evolve rapidly under positive selection and functionally diverge during stickleback speciation.  相似文献   

19.
20.
High levels of female and male sterility were observed among the hybrids from one of the two reciprocal crosses between a wild strain of D. melanogaster known as pi2 and laboratory strains. The sterility, which is part of a common syndrome called hybrid dysgenesis, was found to be associated with the rudimentary condition of one or both of the ovaries or testes. All other tissues, including those of the reproductive system were normal, as were longevity and mating behavior. The morphological details of the sterility closely mimic the agametic condition occurring when germ cells are destroyed by irradiation or by the maternal-effect mutation, grandchildless. We suggest that sterility in hybrid dysgenesis is also caused by failure in the early development of germ cells. There is a thermo-sensitive period beginning at approximately the time of initiation of mitosis among primordial germ cells a few hours before the egg hatches and ending during the early larval stages. Our results suggest that hybrid dysgenesis, which also includes male recombination, mutation and other traits, may be limited to the germ line, and that each of the primordial germ cells develops, or fails to develop, independently of the others. This hypothesis is consistent with the observed frequencies of unilateral and bilateral sterility, with the shape of the thermosensitivity curves and with the fact that males are less often sterile than females. The features of this intraspecific hybrid sterility are found to resemble those seen in some interspecific Drosophila hybrids, especially those from the cross D. melanogaster X D. simulans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号