首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(ADP-ribose) polymerase-1 and -2 (PARP1/2) are two key facilitators of DNA repair and are implicated in the pathogenesis of cancers and several chronic diseases. Inhibitors of PARP1/2 have shown powerful therapeutic effects in the treatment of cancer, cerebral ischemia, and inflammation. In addition, evidence from several studies suggests unique functions for PARP2 in genome surveillance, spermatogenesis, adipogenesis, and T cell development, and PARP2-specific inhibitors might have many other applications. To acquire PARP1/2 inhibitors, many high-throughput screening (HTS) assays for PARP1 inhibitors have been developed. However, detailed screening assays for PARP2 inhibitors have not been reported. Herein, three HTS assays for PARP2 inhibitors were developed and validated with reference inhibitors in each case. The results suggest that the HTS assays for PARP2 inhibitors using chemical quantification of NAD+, biotin-based quantification of PAR, and ELISA quantification of PAR are sensitive, robust, and cost effective.  相似文献   

2.
We describe here detailed protocols to design, optimize and validate in vitro phosphatase assays that we have utilized to conduct high-throughput screens for inhibitors of dual-specificity phosphatases: CDC25B, mitogen-activated protein kinase phosphatase (MKP)-1 and MKP-3. We provide details of the critical steps that are needed to effectively miniaturize the assay into a 384-well, high-throughput format that is both reproducible and cost effective. In vitro phosphatase assays that are optimized according to these protocols should satisfy the assay performance criteria required for a robust high-throughput assay with Z-factors >0.5, and with low intra-plate, inter-plate and day-to-day variability (CV <20%). Assuming the availability of sufficient active phosphatase enzyme and access to appropriate liquid handling automation and detection instruments, a single investigator should be able to develop a 384-well format high-throughput assay in a period of 3-4 weeks.  相似文献   

3.
High-throughput docking is a computational tool frequently used to discover small-molecule inhibitors of enzymes or receptors of known three-dimensional structure. Because of the large number of molecules in chemical libraries, automatic procedures to prune multimillion compound collections are useful for high-throughput docking and necessary for in vitro screening. Here, we propose an anchor-based library tailoring approach (termed ALTA) to focus a chemical library by docking and prioritizing molecular fragments according to their binding energy which includes continuum electrostatics solvation. In principle, ALTA does not require prior knowledge of known inhibitors, but receptor-based pharmacophore information (hydrogen bonds with the hinge region) is additionally used here to identify molecules with optimal anchor fragments for the ATP-binding site of the EphB4 receptor tyrosine kinase. The 21,418 molecules of the focused library (from an initial collection of about 730,000) are docked into EphB4 and ranked by force-field-based energy including electrostatic solvation. Among the 43 compounds tested in vitro, eight molecules originating from two different anchors show low-micromolar activity in a fluorescence-based enzymatic assay. Four of them are active in a cell-based assay and are potential anti-angiogenic compounds.  相似文献   

4.
This article describes the design and validation of a general procedure for the high-throughput isolation of amylosucrase variants displaying higher thermostability or increased resistance to organic solvents. This procedure consists of 2 successive steps: an in vivo selection that eliminates inactive variants followed by automated screening of active variants to isolate mutants displaying enhanced features. The authors chose an Escherichia coli expression vector, allowing a high production rate of the recombinant enzyme in miniaturized culture conditions. The screening assay was validated by minimizing variability for various parameters of the protocol, especially bacterial growth and protein production in cultures in 96-well microplates. Recombinant amylosucrase production was normalized by decreasing the coefficient of variance from 27% to 12.5%. Selective screening conditions were defined to select variants displaying higher thermostability or increased resistance to organic solvents. A first-generation amylosucrase variant library, constructed by random mutagenesis, was subjected to this procedure, yielding a mutant displaying a 25-fold increased stability at 50 degrees C compared to the parental wild-type enzyme.  相似文献   

5.
6.
TRPM2 is a member of the transient receptor potential melastatin (TRPM)-related ion channel family. The activation of TRPM2 induced by oxidative/nitrosative stress leads to an increase in intracellular free Ca(2+). Although further progress in understanding TRPM2's role in cell and organism physiology would be facilitated by isolation of compounds able to specifically modulate its function in primary cells or animal models, no cell-based assays for TRPM2 function well suited for high-throughput screening have yet been described. Here, a novel suspension B lymphocyte cell line stably expressing TRPM2 was used to develop a cell-based assay. The assay uses the Ca(2+)-sensitive fluorescence dye, Fluo-4 NW (no wash), to measure TRPM2-dependent Ca(2+) transients induced by H(2)O(2) and N-methyl-N'-nitrosoguanidine in a 96-well plate format. Assay performance was evaluated by statistical analysis of the Z' factor value and was consistently greater than 0.5 under optimal conditions, suggesting that the assay is very robust. For assay validation, the effects of known inhibitors of TRPM2 and TRPM2 gating secondary messenger production were determined. Overall, the authors have developed a cell-based assay that may be used to identify TRPM2 ion channel modulators from large compound libraries.  相似文献   

7.
We truncated the VP2 protein of infectious bursal disease virus into five fragments: V1–5. All fragments were displayed on the inner membrane of the Escherichia coli periplasm. After disruption of the outer membrane, spheroplasts that had anchored with the VP2 fragment were incubated with an anti-VP2 polyclonal antibody (pAb). Prey pairs were detected and quantitated by flow cytometry with V1, V3, V4 and V5 fragments reacting with the pAb. The antigenicity of all five fragments was analyzed, and our results indicated that epitopes were localized in V1, V3, V4 and V5, consistent with our flow cytometry analysis. Antigenicity analysis of purified VP2 fusion proteins using Western blots confirmed this. Our method provides a rapid, quantitative and simple strategy for identifying linear B cell epitopes.  相似文献   

8.
The zebrafish, Danio rerio, a small, tropical freshwater species native to Pakistan and India, has become a National Institutes of Health-sanctioned model organism and, due to its many advantages as an experimental vertebrate, it has garnered intense interest from the world's scientific community. Some have labeled the zebrafish, the "vertebrate Drosophila," due to its genetic tractability, small size, low cost, and rapid development. The transparency of the embryo, external development, and the many hundreds of mutant and transgenic lines available add to the allure. Now it appears, the zebrafish can be used for high-throughput screening (HTS) of drug libraries in the discovery process of promising new therapeutics. In this review, various types of screening methods are briefly outlined, as are a variety of screens for different disease models, to highlight the range of zebrafish HTS possibilities. High-content screening (HCS) has been available for cell-based screens for some time and, very recently, HCS is being adapted for the zebrafish. This will allow analysis, at high resolution, of drug effects on whole vertebrates; thus, whole body effects as well as those on specific organs and tissues may be determined.  相似文献   

9.
Nitric oxide (NO) is a potent signaling molecule that needs to be tightly regulated to maintain metabolic and cardiovascular homeostasis. The nitric oxide synthase (NOS)/dimethylarginine dimethylaminohydrolase (DDAH)/asymmetric dimethylarginine (ADMA) pathway is central to this regulation. Specifically, the small-molecule ADMA competitively inhibits NOS, thus lowering NO levels. The majority of ADMA is physiologically metabolized by DDAH, thus maintaining NO levels at a physiological concentration. However, under pathophysiological conditions, DDAH activity is impaired, in part as a result of its sensitivity to oxidative stress. Therefore, the application of high-throughput chemical screening for the discovery of small molecules that could restore or enhance DDAH activity might have significant potential in treating metabolic and vascular diseases characterized by reduced NO levels, including atherosclerosis, hypertension, and insulin resistance. By contrast, excessive generation of NO (primarily driven by inducible NOS) could play a role in idiopathic pulmonary fibrosis, sepsis, migraine headaches, and some types of cancer. In these conditions, small molecules that inhibit DDAH activity might be therapeutically useful. Here, we describe optimization and validation of a highly reproducible and robust assay successfully used in a high-throughput screen for DDAH modulators.  相似文献   

10.
11.
The HCV p7 protein is not involved in viral RNA replication but is essential for production of infectious virus. Based on its putative ion channel activity, p7 belongs to a family of viral proteins known as viroporins that oligomerize after insertion into a lipid membrane. To screen for compounds capable of interfering with p7 channel function, a low-throughput liposome-based fluorescent dye permeability assay was modified and converted to a robust high-throughput screening assay. Escherichia coli expressing recombinant p7 were grown in high-density fed-batch fermentation followed by a detergent-free purification using a combination of affinity and reversed-phase chromatography. The phospholipid composition of the liposomes was optimized for both p7 recognition and long-term stability. A counterscreen was developed using the melittin channel-forming peptide to eliminate nonspecific screening hits. The p7 liposome-based assay displayed robust statistics (Z' > 0.75), and sensitivity to inhibition was confirmed using known inhibitors.  相似文献   

12.
Chelating carboxymethyl cellulose was prepared in bead form by immobilizing iminodiacetic acid on carboxymethyl cellulose which was earlier crosslinked and activated by epichlorohydrin. The prepared matrix was used to purify papain by a factor of 2.6 from commercial papain, and by a factor of 4 from papaya latex by batch adsorption and immobilized metal affinity chromatography respectively. Purification factors obtained were equal in batch mode and double in column mode, to purifications obtained on Chelating Sepharose® Fast Flow. Flow rates up to 38 ml/cm2 h were easily possible on the prepared chelating carboxymethyl cellulose.  相似文献   

13.
Many studies have focussed on modulating the activity of γ-aminobutyric acid transaminase (GABA-T), a GABA-catabolizing enzyme, for treating neurological diseases, such as epilepsy and drug addiction. Nevertheless, human GABA-T synthesis and purification have not been established. Thus, biochemical and drug design studies on GABA-T have been performed by using porcine GABA-T mostly and even bacterial GABA-T. Here we report an optimised protocol for overexpression of 6xHis-tagged human GABA-T in human cells followed by a two-step protein purification. Then, we established an optimised human GABA-T (0.5 U/mg) activity assay. Finally, we compared the difference between human and bacterial GABA-T in sensitivity to two irreversible GABA-T inhibitors, gabaculine and vigabatrin. Human GABA-T in homodimeric form showed 70-fold higher sensitivity to vigabatrin than bacterial GABA-T in multimeric form, indicating the importance of using human GABA-T. In summary, our newly developed protocol can be an important first step in developing more effective human GABA-T modulators.  相似文献   

14.
In this report, we describe the recombinant SLO expression as a fusion protein with a C-terminal hexahistidine tag and its purification using immobilized metal affinity expanded bed adsorption (STREAMLINE(trade mark) Chelating). In order to facilitate downstream processing of the purification, an efficient fermentation process was developed focusing on the achievement of high yields of soluble protein. The purification strategy resulted in a 40% recovery of active recombinant SLO and the protein was purified eight-fold. SDS-PAGE and Western-blot analysis of the purified protein revealed the presence of a 75 Mr form, which was the estimated relative Mass of the recombinant SLO.  相似文献   

15.
16.
The detection and identification of O-phosphorylation sites in proteins with mass spectrometry remains a challenge. A common approach to analyse these modifications is to enrich phosphopeptides by immobilized metal affinity chromatography (IMAC) prior to mass spectrometric analysis. In this study two commercially available IMAC kits based on Fe(III)-ions immobilized on magnetic beads and Ga(III)-ions immobilized on a chelate-resin, have been investigated and the binding efficiency of peptide mixtures containing non-phosphorylated, singly, doubly and triply phosphorylated peptides have been tested.  相似文献   

17.
In this study, we developed a high-throughput endothelial cell apoptosis assay using a fluorescence resonance energy transfer (FRET)-based biosensor. After exposure to apoptotic inducer UV-irradiation or anticancer drugs such as paclitaxel, the fluorescence of the cells changed from green to blue. We developed this method into a high-throughput assay in 96-well plates by measuring the emission ratio of yellow fluorescent protein (YFP) to cyan fluorescent protein (CFP) to monitor the activation of a key protease, caspase-3, during apoptosis. The Z' factor for this assay was above 0.5 which indicates that this assay is suitable for a high-throughput analysis. Finally, we applied this functional high-throughput assay for screening vascular disrupting agents (VDA) which could induce endothelial cell apoptosis from our in-house compounds library and dioscin was identified as a hit. As this assay allows real time and sensitive detection of cell apoptosis, it will be a useful tool for monitoring endothelial cell apoptosis in living cell situation and for identifying new VDA candidates via a high-throughput screening.  相似文献   

18.
A method is presented for fluorescence in situ hybridization (FISH) of 16S rRNA gene clones targeting in vivo transcribed plasmid inserts (Clone-FISH). Several different cloning approaches and treatments to generate target-rRNA in the clones were compared. Highest signal intensities of Clone-FISH were obtained using plasmids with a T7 RNA polymerase promoter and host cells with an IPTG-inducible T7 RNA polymerase. Combined IPTG-induction and chloramphenicol treatment of those clones resulted in FISH signals up to 2.8-fold higher than signals of FISH with probe EUB338 to cells of Escherichia coli. Probe dissociation curves for three oligonucleotide probes were compared for reference cells containing native (FISH) or cloned (Clone-FISH) target sequences. Melting behaviour and calculated T(d) values were virtually identical for clones and cells, providing a format to use 16S rRNA gene clones instead of pure cultures for probe validation and optimization of hybridization conditions. The optimized Clone-FISH protocol was also used to screen an environmental clone library for insert sequences of interest. In this application format, 13 out of 82 clones examined were identified to contain sulphate-reducing bacterial rRNA genes. In summary, Clone-FISH is a simple and fast technique, compatible with a wide variety of cloning vectors and hosts, that should have general utility for probe validation and screening of clone libraries.  相似文献   

19.
Bats in the northeastern U.S. are affected by geomycosis caused by the fungus Geomyces destructans (Gd). This infection is commonly referred to as White Nose Syndrome (WNS). Over a million hibernating bats have died since the fungus was first discovered in 2006 in a cave near Albany, New York. A population viability analysis conducted on little brown bats (Myotis lucifugus), one of six bat species infected with Gd, suggests regional extinction of this species within 20 years. The fungus Gd is a psychrophile ("cold loving"), but nothing is known about how it thrives at low temperatures and what pathogenic attributes allow it to infect bats. This study aimed to determine if currently available antifungal drugs and biocides are effective against Gd. We tested five Gd strains for their susceptibility to antifungal drugs and high-throughput screened (HTS) one representative strain with SpectrumPlus compound library containing 1,920 compounds. The results indicated that Gd is susceptible to a number of antifungal drugs at concentrations similar to the susceptibility range of human pathogenic fungi. Strains of Gd were susceptible to amphotericin B, fluconazole, itraconazole, ketoconazole and voriconazole. In contrast, very high MICs (minimum inhibitory concentrations) of flucytosine and echinocandins were needed for growth inhibition, which were suggestive of fungal resistance to these drugs. Of the 1,920 compounds in the library, a few caused 50%--to greater than 90% inhibition of Gd growth. A number of azole antifungals, a fungicide, and some biocides caused prominent growth inhibition. Our results could provide a theoretical basis for future strategies aimed at the rehabilitation of most affected bat species and for decontamination of Gd in the cave environment.  相似文献   

20.
Wu HT  Hsu CC  Tsai CF  Lin PC  Lin CC  Chen YJ 《Proteomics》2011,11(13):2639-2653
Magnetic nanoparticles (MNP, <100 nm) have rapidly evolved as sensitive affinity probes for phosphopeptide enrichment. By taking advantage of the easy magnetic separation and flexible surface modification of the MNP, we developed a surface‐blocked, nanoprobe‐based immobilized metal ion affinity chromatography (NB‐IMAC) method for the enhanced purification of multiply phosphorylated peptides. The NB‐IMAC method allowed rapid and specific one‐step enrichment by blocking the surface of titanium (IV) ion‐charged nitrilotriacetic acid‐conjugated MNP (Ti4+‐NTA‐PEG@MNP) with low molecular weight polyethylene glycol. The MNP demonstrated highly sensitive and unbiased extraction of both mono‐ and multiply phosphorylated peptides from diluted β‐casein (2×10?10 M). Without chemical derivation or fractionation, 1283 phosphopeptides were identified from 400 μg of Raji B cells with 80% purification specificity. We also showed the first systematic comparison on the particle size effect between nano‐sclae IMAC and micro‐scale IMAC. Inductively coupled plasma‐mass spectrometry (ICP‐MS) analysis revealed that MNP had a 4.6‐fold higher capacity for metal ions per unit weight than did the magnetic micro‐sized particle (MMP, 2–10 μm), resulting in the identification of more phosphopeptides as well as a higher percentage of multiply phosphorylated peptides (31%) at the proteome scale. Furthermore, NB‐IMAC complements chromatography‐based IMAC and TiO2 methods because <13% of mono‐ and 12% of multiply phosphorylated peptide identifications overlapped among the 2700 phosphopeptides identified by the three methods. Notably, the number of multiply phosphorylated peptides was enriched twofold and threefold by NB‐IMAC relative to micro‐scale IMAC and TiO2, respectively. NB‐IMAC is an innovative material for increasing the identification coverage in phosphoproteomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号