首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human leg swinging is modeled as the harmonic motion of a hybrid mass-spring pendulum. The cycle period is determined by a gravitational component and an elastic component, which is provided by the attachment of a soft-tissue/muscular spring of variable stiffness. To confirm that the stiffness of the spring changes with alterations in the inertial properties of the oscillator and that stiffness is relevant for the control of cycle period, we conducted this study in which the simple pendulum equivalent length was experimentally manipulated by adding mass to the ankle of a comfortably swinging leg. Twenty-four young, healthy adults were videotaped as they swung their right leg under four conditions: no added mass and with masses of 2.27, 4.55, and 6.82kg added to the ankle. Strong, linear relationships between the acceleration and displacement of the swinging leg within subjects and conditions were found, confirming the motion's harmonic nature. Cycle period significantly increased with the added mass. However, the observed increases were not as large as would be predicted by the induced changes in the gravitational component alone. These differences were interpreted as being due to increases in the active muscular stiffness. Significant linear increases in the elastic component (and hence stiffness) were demonstrated with increases in the simple pendulum equivalent length in 20 of the individual subjects, with r 2 values ranging between 0.89 and 0.99. Significant linear relationships were also demonstrated between the elastic and gravitational components in 22 subjects, with individual r 2 values between 0.90 and 0.99. This finding suggests stiffness is varied concomitantly with alterations in the inertial properties of the leg pendulum in a simplified mechanism of control.The views expressed in this article are those of the authors and do not reflect the official policy or position of the Department of the Army, Department of Defense, or the US Government  相似文献   

2.
Polycardiography was used to analyze cardiac cycle phases in young track athletes during a two-year training cycle. The subjects were examined in the state of relative muscular rest and during moderate bicycle ergometer exercise. It was found that track training leads to a decrease in the heart rate and regulatory myocardial hypodynamic syndrome. Adaptive rearrangements in myocardial contractility were observed; they depended on the age of athletes and the type of training during the training macrocycle. The performance of the test with a moderate intensity was accompanied by a hyperdynamic syndrome, the degree of its manifestation depending on the age of the subject and the exercise intensity.  相似文献   

3.
The aim of the study was to assess fitness profile of elite Croatian female taekwondo athletes and to determine which physical, physiological and motor characteristics differentiate mostly the successful from the less successful fighters. Thirteen national taekwondo champions were divided into two groups according to their senior international competitive achievements. Physiological characteristics, including maximal oxygen uptake (VO2max), were assessed during a continuous progressive treadmill test. The measured motor abilities included explosive and elastic leg strength, maximal strength, muscular endurance, anaerobic alactic power, agility and flexibility. Differences between the successful and less successful athletes were determined using independent t-test. Even though the differences were not statistically significant, the successful athletes had somewhat less fat (2.3%) and were taller by 5.8 cm. The successful athletes achieved significantly higher maximum running speed (15.8 +/- 0.5 versus 14.9 +/- 0. 7 km h(-1); p < 0.05), their ventilatory anaerobic threshold was significantly higher (41.4 +/- 4.1 versus 37.6 +/- 2.0 ml kg(-1) min(-1); p < 0.05) at a significantly lower heart rate (166.8 +/- 6.8 versus 171.0 +/- 8.2 beats min(-1); p < 0.05) than in the less successful athletes. Significant differences were also found in three tests of explosive power (p < 0.05), anaerobic alactic power (p < 0.01), and lateral agility (p < 0.05). The performance of taekwondo female athletes primarily depends on the anaerobic alactic power, explosive power expressed in the stretch-shortening cycle movements, agility and aerobic power.  相似文献   

4.
When chromosomes are aligned and bioriented at metaphase, the elastic stretch of centromeric chromatin opposes pulling forces exerted on sister kinetochores by the mitotic spindle. Here we show that condensin ATPase activity is an important regulator of centromere stiffness and function. Condensin depletion decreases the stiffness of centromeric chromatin by 50% when pulling forces are applied to kinetochores. However, condensin is dispensable for the normal level of compaction (rest length) of centromeres, which probably depends on other factors that control higher-order chromatin folding. Kinetochores also do not require condensin for their structure or motility. Loss of stiffness caused by condensin-depletion produces abnormal uncoordinated sister kinetochore movements, leads to an increase in Mad2(+) kinetochores near the metaphase plate and delays anaphase onset.  相似文献   

5.
The efficiency, safety, and effectiveness of strength training programs are paramount for sport conditioning. Therefore, identifying optimal doses of the training variables allows for maximal gains in muscular strength to be elicited per unit of time and also for the reduction in risk of overtraining and/or overuse injuries. A quantified dose-response relationship for the continuum of training intensities, frequencies, and volumes has been identified for recreationally trained populations but has yet to be identified for competitive athletes. The purpose of this analysis was to identify this relationship in collegiate, professional, and elite athletes. A meta-analysis of 37 studies with a total of 370 effect sizes was performed to identify the dose-response relationship among competitive athletes. Criteria for study inclusion were (a) participants must have been competitive athletes at the collegiate or professional level, (b) the study must have employed a strength training intervention, and (c) the study must have included necessary data to calculate effect sizes. Effect size data demonstrate that maximal strength gains are elicited among athletes who train at a mean training intensity of 85% of 1 repetition maximum (1RM), 2 days per week, and with a mean training volume of 8 sets per muscle group. The current data exhibit different dose-response trends than previous meta-analytical investigations with trained and untrained nonathletes. These results demonstrate explicit dose-response trends for maximal strength gains in athletes and may be directly used in strength and conditioning venues to optimize training efficiency and effectiveness.  相似文献   

6.
Twelve experienced male weight lifters performed a rebound bench press and a purely concentric bench press lift. Data were obtained pertaining to 1) the benefits to concentric motion derived from a prior stretch and 2) the movement frequency adopted during performance of the stretch-shorten cycle (SSC) portion of the rebound bench press lift. The subjects also performed a series of quasi-static muscular actions in a position specific to the bench press movement. A brief perturbation was applied to the bar while these isometric efforts were maintained, and the resulting damped oscillations provided data pertaining to each subject's series elastic component (SEC) stiffness and natural frequency of oscillation. A significant correlation (r = -0.718, P less than 0.01) between maximal SEC stiffness and augmentation to concentric motion derived from prior stretch was observed. Subjects were also observed to perform the SSC portion of the rebound bench press movement to coincide with the natural frequency of oscillation of their SEC. These results are interpreted as demonstrating that the optimal stiffness in a rebound bench press lift was a resonant-compliant SEC.  相似文献   

7.
This study examined the torque-velocity and power-velocity relationships of quadriceps muscle function, stretch shortening cycle function, and leg-spring stiffness in sprint and endurance athletes. Isokinetic maximal knee extension torque was obtained from 7 sprinters and 7 endurance athletes using a Con-trex isokinetic dynamometer. Torque and power measures were corrected for lean-thigh cross-sectional area and lean-thigh volume, respectively. Stretch-shortening cycle function and muscle stiffness measurements were obtained while subjects performed single-legged squat, countermovement, and drop-rebound jumps on an inclined sledge and force-plate apparatus. The results indicated that sprinters generated, on average, 0.15 +/- 0.05 N.m.cm(-2) more torque across all velocities compared with endurance athletes. Significant differences were also found in the power-velocity relationships between the 2 groups. The sprinters performed significantly better than the endurance athletes on all jumps, but there were no differences in prestretch augmentation between the groups. The average vertical leg stiffness during drop jumps was significantly higher for sprinters (5.86 N.m(-1)) compared with endurance runners (3.38 N.m(-1)). The findings reinforce the need for power training to be carried out at fast contraction speeds but also show that SSC function remains important in endurance running.  相似文献   

8.
Bone mineral density (BMD) variables were compared in 2 groups of women Division I collegiate athletes-gymnasts (GYM) and cross-country runners (CC)-during the preseason and during the competitive season. An osteogenic advantage may exist in women athletes involved in impact loading (gymnastics) over those women in active loading sports like long-distance running. The effects of menstrual status and the time of the training season on BMD also were examined. Dietary intake, menstrual status, BMD, and serum estradiol levels were measured during the preseason and during the competitive season in 26 women athletes (18-22 years of age). GYM had significantly higher BMD (p < 0.05) at all sites for both the pre- and posttests compared to CC. Neither group experienced a significant change (p > 0.05) in BMD between trials for any site; however, CC showed slight decreases at all BMD sites from baseline to the posttest. GYM had a higher prevalence of self-reported menstrual cycle disturbances than CC. No significant difference (p > 0.05) in BMD was found between the eumenorrheic and menstrual dysfunction groups (oligo/amenorrheic). In conclusion, the gymnasts had significantly higher (p < 0.05) BMD than the runners, suggesting BMD is influenced by the type of mechanical loading. Menstrual status did not significantly affect BMD in these women athletes. Cross-country runners were determined to be at greater risk than the gymnasts for low bone mass; thus, it is recommended that these athletes include more high-impact activities in their training regimen to optimize their bone health.  相似文献   

9.
This paper defines the process of muscular stabilization acknowledging that it requires putting active muscular constraints on redundant degrees of freedom in the human motion act and in the stabilization of excessive mobility of external systems. It also subjects the process to identification using a procedure which is based on the step function coercion method. As a result of the identification, two models were formulated: the functional model of the wrist joint as the object of regulation and the regulation model of muscular stabilization process. In the first, a linear lumped-parameter second-order system with a time-dependent stiffness was considered. The other case discussed a regulation system with two signal pathways, one of which includes the delays equalling the mean time of a motor reaction in man. Against the background of physiological principles, the interpretation of these two formalisms was used to establish the functional role of tissue stiffness in the process of muscular stabilization of joints. It also led us to propose a mechanism governing this process, which explains a considerable loss of the resultant muscular force when it is exerted on unstable external objects.  相似文献   

10.
Muscle fibers are generally fractionated into type I, IIA, and IIX fibers. Type I fibers specialize in long duration contractile activities and are found in abundance in elite endurance athletes. Conversely type IIA and IIX fibers facilitate short-duration anaerobic activities and are proportionally higher in elite strength and power athletes. A central area of interest concerns the capacity of training to increase or decrease fiber types to enhance high-performance activities. Although interconversions between type IIA and IIX are well recognized in the literature, there are conflicting studies regarding the capacity of type I and II fibers to interconvert. Therefore, the purpose of this article is to analyze the effects of various forms of exercise on type I and type II interconversions. Possible variables that may increase type II fibers and decrease type I fibers are discussed, and these include high velocity isokinetic contractions; ballistic movements such as bench press throws and sprints. Conversely, a shift from type II to type I fibers may occur under longer duration, higher volume endurance type events. Special care is taken to provide practical applications for both the scientist and the athlete.  相似文献   

11.
Changes in total mechanical work, its partitioning into different energy states, mechanical power, force-time characteristics, force impulses of body segments and mass center's pathway characteristics during long jump take-off were investigated on four national and six ordinary level athletes. Both cinematographic and force-platform techniques were used. The data showed that the national level jumpers had higher run-up and higher take-off (release) velocities in horizontal and vertical directions. In addition, they were able to utilize efficiently the elastic energy stored in the leg extensor muscles at take-off impact. This was seen in high support leg eccentric and concentric forces, which were produced in short contact times. The ordinary level athletes had greater variability in the investigated attributes, and they reached their maximum length of jumps in many different ways. Cinematically the greatest difference between the subject groups was observed in the timing of the various body segment movements. In better athletes all the body parts (arms, trunk, and legs) had decelerating horizontal impulses, but in all ordinary level athletes the horizontal impulse of the swing leg was accelerating during take-off.  相似文献   

12.
It is found that the activity of lactate dehydrogenase (LDH) in blood of youth athletes (both male and female) at rest is lower than in blood of untrained subjects (control). This decrease in female athletes was nearly twice as pronounced as that in male athletes. Veloergometric load significantly increased the level of LGH; however, this increase was somewhat greater in male athletes. Coupled changes in the activity of LDH and in the development of the muscle component of the soma may serve as an indicator of the training status of athletes and their ability to tolerate speed and power muscular load.  相似文献   

13.
How carnivorous plants outsmart their prey The non‐muscular movements of plants, especially the fast traps of carnivorous plants, might appear as natural “wonders”, but they are all evoked by the interplay of functional morphological structures developed during evolution with well‐described biophysical and chemical processes. Hydraulic “motors”, which are based on water displacement in the respective cells and tissues, entail rather slow motions. Large and fast structures, as e.g., the snap‐traps of the carnivorous Venus flytrap, often depend on the release of stored elastic energy (relaxation) which acts as a speed boost and significantly speeds up the motion. The fast traps presented here and the deformation principles involved, including some mechanical “tricks”, can be rebuild in simple and low‐cost physical models which are especially useful for an application in teaching.  相似文献   

14.
The ability to metabolize or tolerate lactate and produce power simultaneously can be an important determinant of performance. Current training practices for improving lactate use include high-intensity aerobic activities or a combination of aerobic and resistance training. Excessive aerobic training may have undesired physiological adaptations (e.g., muscle loss, change in fiber types). The role of explosive power training in lactate production and use needs further clarification. We hypothesized that high-volume explosive power movements such as Olympic lifts can increase lactate production and overload lactate clearance. Hence, the purpose of this study was to assess lactate accumulation after the completion of 3 different volume patterns of power cleans. Ten male recreational athletes (age 24.22 ± 1.39 years) volunteered. Volume patterns consisted of 3 sets × 3 repetition maximum (3RM) (low volume [LV]), 3 sets × 6 reps at 80-85% of 3RM (midvolume [MV]), and 3 sets × 9 reps at 70-75% of 3RM (high volume [HV]). Rest period was identical at 2 minutes. Blood samples were collected immediately before and after each volume pattern. The HV resulted in the greatest lactate accumulation (7.43 ± 2.94 mmol·L) vs. (5.27 ± 2.48 and 4.03 ± 1.78 mmol·L in MV and LV, respectively). Mean relative increase in lactate was the highest in HV (356.34%). The findings indicate that lactate production in power cleans is largely associated with volume, determined by number of repetitions, load, and rest interval. High-volume explosive training may impose greater metabolic demands than low-volume explosive training and may improve ability to produce power in the presence of lactate. The role of explosive power training in overloading the lactate clearance mechanism should be examined further, especially for athletes of intermittent sport.  相似文献   

15.
Athletes in sports requiring explosive movements might benefit from a unique form of training in which a limb is restrained while the athlete attempts ballistic (explosive) movements. We investigated the effects of such ballistic training and conventional resistance training on force and speed of front kicks, side kicks, and palm strikes of martial artists. We assigned subjects randomly to an experimental group (n = 13) or a control (normal martial art training) group (n = 9). Conventional resistance training produced a gain of 12% (95% likely limits +/- 13%) in front kick force relative to the control group. Overall ballistic training and conventional resistance training decreased side kick force by 15% (+/-14%), but movement speeds increased by 11-21% (+/-13-17%). Responses to ballistic training were generally more marked in more highly skilled athletes. Attempted ballistic training may be a beneficial adjunct to resistance training for skilled athletes in sports where speed rather than force is critical.  相似文献   

16.
Elastic band assisted and resisted jump training may be a novel way to develop lower-body power. The purpose of this investigation was to (a) determine the kinetic differences between assisted, free, and resisted countermovement jumps and (b), investigate the effects of contrast training using either assisted, free, or resisted countermovement jump training on vertical jump performance in well-trained athletes. In part 1, 8 recreationally trained men were assessed for force output, relative peak power (PP·kg(-1)) and peak velocity during the 3 types of jump. The highest peak force was achieved in the resisted jump method, while PP·kg(-1) and peak velocity were greatest in the assisted jump. Each type of jump produced a different pattern of maximal values of the variables measured, which may have implications for developing separate components of muscular power. In part 2, 28 professional rugby players were assessed for vertical jump height before and after 4 weeks of either assisted (n = 9), resisted (n = 11), or free (n = 8) countermovement jump training. Relative to changes in the control group (1.3 ± 9.2%, mean ± SD), there were clear small improvements in jump height in the assisted (6.7 ± 9.6%) and the resisted jump training group (4.0 ± 8.8%). Elastic band assisted and resisted jump training are both effective methods for improving jump height and can be easily implemented into current training programs via contrast training methods or as a part of plyometric training sessions. Assisted and resisted jump training is recommended for athletes in whom explosive lower-body movements such as jumping and sprinting are performed as part of competition.  相似文献   

17.
To provide information regarding the anthropometric and fitness profile of young karatekas and to study its evolution with age. Data from top-level karatekas were included in the analysis: 97 athletes in the U14 category (12–13 years old), 238 in cadet (14–15 years old), 261 in junior (16–17 years old) and 177 in U21 (18–20 years old), which makes a total of 773 athlete data sets. Karatekas underwent anthropometric (weight, height, body mass index and body fat percentage) and fitness (sit and reach, 20-m shuttle run, standing long jump, overhead 3-kg ball throw, 10x5-m shuttle run, and plate-tapping) assessments during the training camps organized by the Spanish National Karate Federation between 1999 and 2016. Male karatekas were taller and heavier, and performed better than females in all the fitness dimensions assessed, except for flexibility and speed of upper limb movements. The obtained cardiovascular and lower-body muscular values indicated that karatekas in this study were placed between the 80th and the 90th percentile when compared with the general population. The results of the agility, coordination and speed of upper limb movements, and flexibility tests showed that the karatekas obtained much higher scores than those observed in age-matched populations. Young karatekas show a high fitness level in comparison with the general population, especially with regards to aerobic performance, lower-body muscular power and upper-limb movement speed. Reference values of anthropometric and fitness dimensions are provided in order to be used by coaches, conditioning trainers and sport scientists when testing young male and female karatekas.  相似文献   

18.
The purpose of the study was to investigate the effects of sex hormones across menstrual cycle phases on lower extremity neuromuscular control patterns during the landing phase of a drop jump. A repeated-measures design was utilized to examine sex hormone effects in 26 recreationally active eumenorrheic women. Varus/valgus knee angle and EMG activity from six lower extremity muscles were recorded during three drop jumps from a 50 cm platform in each phase of the menstrual cycle. Blood assays verified sex hormone levels and cycle phase. The semitendinosus muscle exhibited onset delays (p0.006) relative to ground contact during the luteal phase, and demonstrated a significant (p0.05) difference between early and late follicular phases. Muscle timing differences between the gluteus maximus and semitendinosus were decreased (p0.05) in the luteal compared to early follicular phases. These results suggest a different co-contractive behavior between the gluteus maximus and semitendinosus, signifying a shift in neuromuscular control patterns. It appears that female recreational athletes utilize a different neuromuscular control pattern for performing a drop jump sequence when estrogen levels are high (luteal phase) compared to when they are low (early follicular phase).  相似文献   

19.
The purpose of this study was to examine the effects of age on active leg stiffness adjustment, electromyogram (EMG) activities and energy stored during eccentric and concentric phases in performing a maximal functional task involving stretch-shorten cycle. Ten young (24.3 ± 2 years) and 10 old (68.6 ± 5 years) healthy male subjects were filmed during maximal performance of counter movement jump (CMJ) and squat jump (SJ) on force plate. Integrated EMG (IEMG), ground reaction force (GRF), active leg stiffness, energy stored/returned and active work done by the muscles were compared between two groups on eccentric (ECC) and concentric (CON) phases of CMJ. The GRF, leg stiffness and energy stored in ECC and GRF, IEMG, energy returned and active work in CON were less in the elderly (p < 0.05). These results demonstrate that the neuromuscular function of adjusting active stiffness, storing elastic energy and optimizing the performance may decrease with age during CMJ.  相似文献   

20.
The purpose of this study was to investigate the effectiveness of 4 weeks of low-intensity resistance training with blood-flow occlusion on upper and lower body muscular hypertrophy and muscular strength in National Collegiate Athletic Association Division IA football players. There were 32 subjects (average age 19.2 ± 1.8 years) who were randomized to an occlusion group or control group. The athletes performed 4 sets of bench press and squat in the following manner with or without occlusion: 30 repetitions of 20% predetermined 1 repetition maximum (1RM), followed by 3 sets of 20 repetitions at 20% 1RM. Each set was separated by 45 seconds. The training duration was 3 times per week, after the completion of regular off-season strength training. Data collected included health history, resting blood pressure, pretraining and posttraining bench press and squat 1RM, upper and lower chest girths, upper and lower arm girths, thigh girth, height, and body mass. The increases in bench press and squat 1RM (7.0 and 8.0%, respectively), upper and lower chest girths (3 and 3%, respectively), and left upper arm girth were significantly greater in the experiment group (p < 0.05). Occlusion training could provide additional benefits to traditional strength training to improve muscular hypertrophy and muscular strength in collegiate athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号