首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Research suggests that static stretching can negatively influence muscle strength and power and may result in decreased functional performance. The dynamic warm-up (DWU) is a common alternative to static stretching before physical activity, but there is limited research investigating the effects of a DWU. The purpose of this study was to compare the acute effects of a DWU and static stretching warm-up (SWU) on muscle flexibility, strength, and vertical jump using a randomized controlled trial design. Forty-five volunteers were randomly assigned into a control (CON), SWU, or DWU group. All participants rode a stationary bicycle for 5 minutes and completed a 10-minute warm-up protocol. During this protocol, the DWU group performed dynamic stretching and running, the SWU group performed static stretching, and the CON group rested. Dependent variables were measured immediately before and after the warm-up protocol. A digital inclinometer measured flexibility (degrees) for the hamstrings, quadriceps, and hip flexor muscles. An isokinetic dynamometer measured concentric and eccentric peak torque (N·m/kg) for the hamstrings and quadriceps. A force plate was used to measure vertical jump height (meters) and power (watts). In the DWU group, there was a significant increase in hamstring flexibility (pretest: 26.4 ± 13.5°, posttest: 16.9 ± 9.4°; p < .0001) and eccentric quadriceps peak torque (pretest: 2.49 ± 0.83 N·m/kg, posttest: 2.78 ± 0.69 N·m/kg; p = 0.04). The CON and SWU did not significantly affect any flexibility, strength, or vertical jump measures (p > 0.05). The DWU significantly improved eccentric quadriceps strength and hamstrings flexibility, whereas the SWU did not facilitate any positive or negative changes in muscle flexibility, strength, power, or vertical jump. Therefore, the DWU may be a better preactivity warm-up choice than an SWU.  相似文献   

2.
The purpose of this study was to compare the impact of different types of warm-up on countermovement vertical jump (VJ) performance. Sixty-four male Division I collegiate football players completed a pretest for VJ height. The participants were then randomly assigned to a warm-up only condition, a warm-up plus static stretching condition, a warm-up plus dynamic stretching condition, or a warm-up plus dynamic flexibility condition. VJ performance was tested immediately after the completion of the warm-up. The results showed that there was a significant difference (P < .05) in VJ performance between the warm-up groups. Posttest jump performance improved in all groups; however, the mean for the static stretching group was significantly lower than the means for the other 3 groups. The static stretching negated the benefits gained from a general warm-up when performed immediately before a VJ test.  相似文献   

3.
Stretching before performance is a common practice among athletes in hopes of increasing performance and reducing the risk of injury. However, cumulative results indicate a negative impact of static stretching and proprioceptive neuromuscular facilitation (PNF) on performance; thus, there is a need for evaluating other stretching strategies for effective warm-up. The purpose of this study was to compare the differences between two sets of ballistic stretching and two sets of a dynamic stretching routine on vertical jump performance. Twenty healthy male and female college students between the ages of 22 and 34 (24.8 +/- 3 years) volunteered to participate in this study. All subjects completed three individual testing sessions on three nonconsecutive days. On each day, the subjects completed one of three treatments (no stretch, ballistic stretch, and dynamic stretch). Intraclass reliability was determined using the data obtained from each subject. A paired samples t-test revealed no significant difference in jump height, force, or power when comparing no stretch with ballistic stretch. A significant difference was found on jump power when comparing no stretch with dynamic stretch, but no significant difference was found for jump height or force. Statistics showed a very high reliability when measuring jump height, force, and power using the Kistler Quattro Jump force plate. It seems that neither dynamic stretching nor ballistic stretching will result in an increase in vertical jump height or force. However, dynamic stretching elicited gains in jump power poststretch.  相似文献   

4.
The purpose of this study was to compare a 5-minute treadmill activity at 70% maximum heart rate (MHR) and 5 to 6 minutes of ballistic stretching to a 5-minute treadmill activity at 60% of MHR and 5 to 6 minutes of static stretching. Thirty healthy college students, 7 men and 23 women, volunteered. Most volunteers were moderately active. All participants signed an informed consent. Participants received the aforementioned warm-ups in random order with 48 to 72 hours between warm-ups. The stretching exercises were a back stretch, a quadriceps stretch, and a hamstring stretch. Three trials for 30 seconds each were given. After each warm-up the participants performed the modified-modified Schober test for low back flexibility, active knee extension test for hamstring flexibility, and plantar flexion for ankle flexibility. There were no significant differences on any of the 3 range of motion (ROM) tests although the ankle ROM test was almost significantly greater (68.8 degrees ) after the warm-up with static stretching compared with 65.9 degrees after the warm-up with ballistic stretching. A more intense cardiovascular activity and ballistic stretching were similar to a less intense cardiovascular activity and static stretching on flexibility. If athletes perform a warm-up and static or ballistic stretching before their workouts, then they should continue to perform the warm-up and the stretching routine with which they are most familiar and comfortable.  相似文献   

5.
Numerous studies have shown that stretching routines can induce strength and force deficits, although the amount of stretching needed to cause these deficits remains unclear. Therefore, the purpose of the study was to examine the relationship between varying amounts of acute static stretching on jumping performance. By systematically increasing the amount of stretching, possible differences in jump height may be discovered, defining a line where acute static stretching becomes detrimental to performance. Ten collegiate athletes and 10 recreational athletes completed 3 different stretching treatments and 1 control treatment on different days in a within-treatment design. Stretching treatments consisted of 2, 4, or 6 sets of stretches, with each stretch held for 15 seconds with a 15-second rest. Stretches were done to the quadriceps, hamstrings, and plantar flexors. Upon arrival, each subject performed a 5-minute warm-up on a stationary upright cycle. After a brief rest period, participants performed 3 trials of a vertical jump test, followed by one of the treatment protocols. After another rest period, a second set of vertical jump trials was performed. Post-6 sets was significantly lower than Pre-6 sets (p < or = 0.05). Additionally, Post-6 sets was significantly lower than Pre-4 sets, Pre-2 sets, and Pre-control (p < or = 0.05). No other conditions were significantly different. In conclusion, 6 sets of stretches, or 90 seconds per muscle group, should not be performed before power activities such as jumping where optimal performance is desired.  相似文献   

6.
Traditionally stretching has been included as part of a warm-up that precedes athletic participation. However, there is mixed evidence as to whether stretching actually enhances or hinders athletic performance. Therefore, the purpose of this study was to examine the acute effects of static (SS) and ballistic stretching (BS) on vertical jump (VJ) performance and to investigate whether power was altered at 15 and 30 minutes after stretching. Sixteen actively trained women performed a series of vertical jumps (countermovement and drop jumps) after an initial nonstretching (NS) session and after participating in BS and SS sessions that were conducted in a balanced and randomized order. The results indicated that there was no significant difference (p < 0.05) in VJ scores as a result of static or ballistic stretching, elapsed time, or initial flexibility scores. This suggests that stretching prior to competition may not negatively affect the performance of trained women.  相似文献   

7.
The purpose of this study was to determine which phase of a 30-m sprint (acceleration and/or maximal velocity) was affected by preperformance static stretching. Data were collected from 20 elite female soccer players. On two nonconsecutive days, participants were randomly assigned to either the stretch or no-stretch condition. On the first day, the athletes in the no-stretch condition completed a standard warm-up protocol and then performed three 30-m sprints, with a 2-minute rest between each sprint. The athletes in the stretch condition performed the standard warm-up protocol, completed a stretching routine of the hamstrings, quadriceps, and calf muscles, and then immediately performed three 30-m sprints, also with a 2-minute rest between each sprint. On the second day, the groups were reversed, and identical procedures were followed. One-way repeated-measures analyses of variance revealed a statistically significant difference in acceleration (p < 0.0167), maximal-velocity sprint time (p < 0.0167), and overall sprint time (p < 0.0167) between the stretch and no-stretch conditions. Static stretching before sprinting resulted in slower times in all three performance variables. These findings provide evidence that static stretching exerts a negative effect on sprint performance and should not be included as part of the preparation routine for physical activity that requires sprinting.  相似文献   

8.
The purpose of this study was to investigate the effects of dynamic activity and dynamic activity/static stretching of the gastrocnemius muscle on vertical jump (VJ) performance. Additionally, muscle activity was recorded using electromyography. Thirteen healthy adults (7 men and 6 women) with a mean age of 26 +/- 4 years served as subjects. The average jump height and muscle activity from 3 separate maximal VJ attempts were performed at the start of each session to be used as baseline measures using the Kistler force plate and the Noraxon telemetry EMG unit. Subjects then performed 1 of 2 protocols: dynamic activity only or dynamic activity with static stretching. Each protocol was followed by 3 maximal VJ trials. Average VJ height was analyzed using a 2 (time: pre, post) x 2 (prejump protocol: dynamic activity, dynamic activity + stretching) analysis of variance with repeated measures on both factors. A paired-samples t-test was used to compare the intraday difference scores for EMG activity between the 2 conditions. Jump height was not influenced by the interaction of pre-post and protocol (p = 0.0146. There was no difference for the main effects of time (p = 0.274) and pre-jump protocol (p = 0.595). Gastrocnemius muscle activity was likewise not different for the 2 prejump protocols (p = 0.413). The results from this study imply that the use of static stretching in combination with dynamic activity of the gastrocnemius muscle does not appear to have an adverse affect on VJ height performance. The practical importance concerns the warm-up routine that coaches and athletes employ; that is, they may want to consider including an aerobic component when statically stretching the gastrocnemius immediately prior to a vertical jumping event.  相似文献   

9.
Stretching is often included as part of a warm-up procedure for basketball activity. However, the efficacy of stretching with respect to sport performance has come into question. We determined the effects of 4 different warm-up protocols followed by 20 minutes of basketball activity on flexibility and vertical jump height. Subjects participated in 6 weeks (2 times per week) of warm-up and basketball activity. The warm-up groups participated in ballistic stretching, static stretching, sprinting, or basketball shooting (control group). We asked 3 questions. First, what effect does 6 weeks of warm-up exercise and basketball play have on both flexibility and vertical jump height? We measured sit and reach and vertical jump height before (week -1) and after (week 7) the 6 weeks. Flexibility increased for the ballistic, static, and sprint groups compared to the control group (p < 0.0001), while vertical jump height did not change for any of the groups. Our second question was what is the acute effect of each warm-up on vertical jump height? We measured vertical jump immediately after the warm-up on 4 separate occasions during the 6 weeks (at weeks 0, 2, 4, and 6). Vertical jump height was not different for any group. Finally, our third question was what is the acute effect of each warm-up on vertical jump height following 20 minutes of basketball play? We measured vertical jump height immediately following 20 minutes of basketball play at weeks 0, 2, 4, and 6. Only the ballistic stretching group demonstrated an acute increase in vertical jump 20 minutes after basketball play (p < 0.05). Coaches should consider using ballistic stretching as a warm-up for basketball play, as it is beneficial to vertical jump performance.  相似文献   

10.
The purpose of this study was to compare the effects of 6 warm-up protocols, with and without stretches, on 2 different power maneuvers: a 30-m sprint run and a vertical countermovement jump (CJ). The 6 protocols were: (a) walk plus run (WR); (b) WR plus exercises including small jumps (EJ); (c) WR plus dynamic active stretch plus exercises with small jumps (DAEJ); (d) WR plus dynamic active stretch (DA); (e) WR plus static stretch plus exercises with small jumps (SSEJ); and (f) WR plus static stretch (SS). Twenty-six college-age men (n = 14) and women (n = 12) performed each of 6 randomly ordered exercise routines prior to randomly ordered sprint and vertical jump field tests; each routine and subsequent tests were performed on separate days. A 2 x 6 repeated measures analysis of variance revealed a significant overall linear trend (p < or = 0.05) with a general tendency toward reduction in jump height when examined in the following analysis entry order: WR, EJ, DAEJ, DA, SSEJ, and SS. The post hoc analysis pairwise comparisons showed the WR protocol produced higher jumps than did SS (p = 0.003 < or = 0.05), and DAEJ produced higher jumps than did SS (p = 0.009 < or = 0.05). There were no significant differences among the 6 protocols on sprint run performance (p > or = 0.05). No significant interaction occurred between gender and protocol. There were significant differences between men and women on CJ and sprint trials; as expected, in general men ran faster and jumped higher than the women did. The data indicate that a warm-up including static stretching may negatively impact jump performance, but not sprint time.  相似文献   

11.
Debate exists between the benefits and effectiveness of a dynamic warm-up vs. a static warm-up. This study was conducted to compare dynamic and static warm-ups on lower body explosiveness as measured by stationary vertical jump (VJ) and standing long jump (LJ) among collegiate baseball players. Participants (n = 17; age = 19.59 ± 1.37 years) progressed through 3 different warm-ups on weekly testing dates over a 7-week period. After the warm-up routines, participants were measured for VJ height and LJ distance in centimeters. The mean jump heights for VJ were 66.49 ± 8.28 cm for dynamic, 61.42 ± 7.51 cm for static, and 62.72 ± 7.84 cm for the control condition. The mean jump distances for LJ were 231.99 ± 20.69 cm for dynamic, 219.69 ± 20.96 cm for static, and 226.46 ± 20.60 cm for the control. Results indicated that the participants jumped significantly higher in both experimental conditions while under the influence of the dynamic warm-up (VJ-F = 22.08; df = 1.33, 21.345; p < 0.00 and LJ-F = 32.20; df = 2, 32; p < 0.01). Additional LJ analysis determined that individuals jumped significantly further after no warm-up compared to after a static warm-up (-6.78, p < 0.05). Lower body explosiveness is critical in baseball and many other sports as well. The results show that dynamic warm-up increases both VJ height and LJ distance. Specifically, these findings indicate that athletes could gain nearly 2 in. on his or her vertical jump by simply switching from a static warm-up routine to a dynamic routine.  相似文献   

12.
The purpose of this study was to examine the effects of different modes of stretching within a pre-exercise warm-up on high-speed motor capacities important to soccer performance. Eighteen professional soccer players were tested for countermovement vertical jump, stationary 10-m sprint, flying 20-m sprint, and agility performance after different warm-ups consisting of static stretching, dynamic stretching, or no stretching. There was no significant difference among warm-ups for the vertical jump: mean +/- SD data were 40.4 +/- 4.9 cm (no stretch), 39.4 +/- 4.5 cm (static), and 40.2 +/- 4.5 cm (dynamic). The dynamic-stretch protocol produced significantly faster 10-m sprint times than did the no-stretch protocol: 1.83 +/- 0.08 seconds (no stretch), 1.85 +/- 0.08 seconds (static), and 1.87 +/- 0.09 seconds (dynamic). The dynamic- and static-stretch protocols produced significantly faster flying 20-m sprint times than did the no-stretch protocol: 2.41 +/- 0.13 seconds (no stretch), 2.37 +/- 0.12 seconds (static), and 2.37 +/- 0.13 seconds (dynamic). The dynamic-stretch protocol produced significantly faster agility performance than did both the no-stretch protocol and the static-stretch protocol: 5.20 +/- 0.16 seconds (no stretch), 5.22 +/- 0.18 seconds (static), and 5.14 +/- 0.17 seconds (dynamic). Static stretching does not appear to be detrimental to high-speed performance when included in a warm-up for professional soccer players. However, dynamic stretching during the warm-up was most effective as preparation for subsequent high-speed performance.  相似文献   

13.
The purpose of this research was to compare the effects of a warm-up with static vs. dynamic stretching on countermovement jump (CMJ) height, reaction time, and low-back and hamstring flexibility and to determine whether any observed performance deficits would persist throughout a series of CMJs. Twenty-one recreationally active men (24.4 ± 4.5 years) completed 3 data collection sessions. Each session included a 5-minute treadmill jog followed by 1 of the stretch treatments: no stretching (NS), static stretching (SS), or dynamic stretching (DS). After the jog and stretch treatment, the participant performed a sit-and-reach test. Next, the participant completed a series of 10 maximal-effort CMJs, during which he was asked to jump as quickly as possible after seeing a visual stimulus (light). The CMJ height and reaction time were determined from measured ground reaction forces. A treatment × jump repeated-measures analysis of variance for CMJ height revealed a significant main effect of treatment (p = 0.004). The CMJ height was greater for DS (43.0 cm) than for NS (41.4 cm) and SS (41.9 cm) and was not less for SS than for NS. Analysis also revealed a significant main effect of jump (p = 0.005) on CMJ height: Jump height decreased from the early to the late jumps. The analysis of reaction time showed no significant effect of treatment. Treatment had a main effect (p < 0.001) on flexibility, however. Flexibility was greater after both SS and DS compared to after NS, with no difference in flexibility between SS and DS. Athletes in sports requiring lower-extremity power should use DS techniques in warm-up to enhance flexibility while improving performance.  相似文献   

14.
The purpose of this study was to determine the effectiveness of specific and nonspecific warm-ups on the vertical jump test performed by athletic men. Twenty-nine men (18-23 years) in athletics (speed positions in football) performed vertical jump tests on 4 separate days after completing 4 different warm-up protocols. The 4 warm-up protocols were (a) submaximal jump warm-up, (b) weighted jump warm-up, (c) stretching warm-up, and (d) no warm-up. The weighted jump warm-up protocol required 5 countermovement jumps onto a box, with the athletes holding dumbbells equaling 10% of their body weight. The submaximal jump warm-up protocol required the athletes to perform 5 countermovement jumps at 75% intensity of their past maximum vertical jump score. The stretching warm-up protocol required the athletes to perform 14 different stretches, each held for 20 seconds. The no warm-up protocol required the athletes to perform no activity prior to being tested. Three vertical jumps were measured following each warm-up; the score for analysis was the best jump. The data were analyzed with a repeated measures analysis of variance and Bonferroni post hoc tests. The Bonferroni post hoc tests showed a significant difference (p < 0.001) between the weighted jump warm-up and all other warm-ups. The effect size was 0.380 and the power was 1.00 for the statistical analyses. We concluded that utilizing a weighted resistance warm-up would produce the greatest benefit when performing the vertical jump test.  相似文献   

15.
The purpose of this investigation was to examine the influence of upper-body static stretching and dynamic stretching on upper-body muscular performance. Eleven healthy men, who were National Collegiate Athletic Association Division I track and field athletes (age, 19.6 +/- 1.7 years; body mass, 93.7 +/- 13.8 kg; height, 183.6 +/- 4.6 cm; bench press 1 repetition maximum [1RM], 106.2 +/- 23.0 kg), participated in this study. Over 4 sessions, subjects participated in 4 different stretching protocols (i.e., no stretching, static stretching, dynamic stretching, and combined static and dynamic stretching) in a balanced randomized order followed by 4 tests: 30% of 1 RM bench throw, isometric bench press, overhead medicine ball throw, and lateral medicine ball throw. Depending on the exercise, test peak power (Pmax), peak force (Fmax), peak acceleration (Amax), peak velocity (Vmax), and peak displacement (Dmax) were measured. There were no differences among stretch trials for Pmax, Fmax, Amax, Vmax, or Dmax for the bench throw or for Fmax for the isometric bench press. For the overhead medicine ball throw, there were no differences among stretch trials for Vmax or Dmax. For the lateral medicine ball throw, there was no difference in Vmax among stretch trials; however, Dmax was significantly larger (p 相似文献   

16.
Although there has been substantial research on the acute effects of static stretching on subsequent force and power development, the outcome after stretching of the antagonist musculature has not been examined. The purpose of this study was to investigate the effects of static stretching of antagonist musculature on multiple strength and power measures. Sixteen trained men were tested for vertical jump height and isokinetic peak torque production during knee extension at 60°.s (SlowKE) and 300°.s (FastKE). Electromyography was recorded for the vastus lateralis and the biceps femoris muscles during isokinetic knee extension. Subjects performed these tests in a randomized counterbalanced order with and without prior stretching of the antagonist musculature. Paired samples t-tests indicated significantly greater torque production during the FastKE when preceded by stretching of the antagonist musculature vs. the nonstretch trial (102.2 vs. 93.5 N.m; p = 0.032). For SlowKE, torque production was not significantly different between the trials (176.7 vs. 162.9 N.m; p = 0.086). Vertical jump height (59.8 vs. 58.6 cm; p = 0.011) and power (8571 vs. 8487 W; p = 0.005) were significantly higher after the stretching trial vs. the nonstretching trial. Electromyography responses were similar between the trials. These results suggest that static stretching of the antagonist hamstrings before high-speed isokinetic knee extension increases the torque production. Furthermore, stretching the hip flexors (emphasis on single-joint hip flexors) and dorsiflexors, the antagonists of the hip extensors and plantarflexors, may enhance jump height and power, although the effect sizes were small.  相似文献   

17.
This study examined whether an extrinsic motivator, such as an overhead goal, during a plyometric jump may alter movement biomechanics. Our purpose was to examine the effects of an overhead goal on vertical jump height and lower-extremity biomechanics during a drop vertical jump and to compare the effects on female (N = 18) versus male (N = 17) athletes. Drop vertical jump was performed both with and without the use of an overhead goal. Greater vertical jump height (p = 0.002) and maximum takeoff external knee flexion (quadriceps) moment (p = 0.04) were attained with the overhead goal condition versus no overhead goal. Men had significantly greater vertical jump height (p < 0.001), maximum takeoff vertical force (p = 0.009), and maximum takeoff hip extensor moment (p = 0.02) compared with women. A significant gender x overhead goal interaction was found for stance time (p = 0.02) and maximum ankle (p = 0.04) and knee flexion angles (p = 0.04), with shorter stance times and lower angles in men during overhead goal time. These results indicate that overhead goals may be incorporated during training and testing protocols to alter lower-extremity biomechanics and can increase performance.  相似文献   

18.
The purpose of this study was to compare the acute effects of different modes of stretching on vertical jump performance. Eighteen male university students (age, 24.3 +/- 3.2 years; height, 181.5 +/- 11.4 cm; body mass, 78.1 +/- 6.4 kg; mean +/- SD) completed 4 different conditions in a randomized order, on different days, interspersed by a minimum of 72 hours of rest. Each session consisted of a standard 5-minute cycle warm-up, accompanied by one of the subsequent conditions: (a) control, (b) 10-minute static stretching, (c) 10-minute ballistic stretching, or (d) 10-minute proprioceptive neuromuscular facilitation (PNF) stretching. The subjects performed 3 trials of static and countermovement jumps prior to stretching and poststretching at 5, 15, 30, 45, and 60 minutes. Vertical jump height decreased after static and PNF stretching (4.0% and 5.1%, p < 0.05) and there was a smaller decrease after ballistic stretching (2.7%, p > 0.05). However, jumping performance had fully recovered 15 minutes after all stretching conditions. In conclusion, vertical jump performance is diminished for 15 minutes if performed after static or PNF stretching, whereas ballistic stretching has little effect on jumping performance. Consequently, PNF or static stretching should not be performed immediately prior to an explosive athletic movement.  相似文献   

19.
Although several studies have investigated the acute effect of static stretching exercises, the duration of exercises that negatively affects performance has not been ascertained. This study was conducted to determine the acute effect of different static stretching durations on quadriceps isometric and isokinetic peak torque production. The 50 participants were randomly allocated into five equivalent sized groups and were asked to perform a stretching exercise of different duration (no stretch, 10-second stretch, 20-second stretch, 30-second stretch, and 60-second stretch). The knee flexion range of motion and the isometric and concentric isokinetic peak torques of the quadriceps were measured before and after a static stretching exercise in the four experimental groups. The same parameters were examined in the control group (no stretch) without stretching, before and after a 5-minute passive rest. There were no significant differences among groups before the experimentation regarding their physical characteristics and performances (P > 0.05). These results reflect the different groups' homogeneity. Significant knee joint flexibility increases (P < 0.001) and significant isometric and isokinetic peak torque reductions (P < 0.05-0.001) have been shown to occur only after 30 and 60 seconds of quadriceps static stretching. Stretching reduced isometric peak torque by 8.5% and 16.0%, respectively. Concerning isokinetic peak torque after 30 and 60 seconds of stretching, it was reduced by 5.5% vs. 11.6% at 60 degrees/s and by 5.8% vs. 10.0% at 180 degrees/s. We suggest that torque decrements are related to changes of muscle neuromechanical properties. It is recommended that static stretching exercises of a muscle group for more than 30 seconds of duration be avoided before performances requiring maximal strength.  相似文献   

20.
The purpose of this study was to examine the acute effects of 3 different warm-up protocols with and without a weighted vest on vertical jump (VJ) and long jump (LJ) performance in athletic women. Sixteen subjects (19.7 +/- 1.4 years, 67.0 +/- 10.7 kg, 165.7 +/- 11.4 cm) participated in 3 testing sessions in random order on 3 nonconsecutive days. Prior to the testing of the VJ and LJ, the subjects performed 1 of the following 10-minute warm-up protocols: (a) low- to moderate-intensity stationary cycling followed by 4 lower-body static stretches (SS) (3 x 20 seconds); (b) 12 moderate- to high-intensity dynamic exercises (DY); and (c) the same 12 dynamic exercises with a weighted vest (10% of body mass) worn for the last 4 exercises (DYV). Analysis of the data revealed that VJ performance was significantly greater (p < 0.05) following DYV (43.9 +/- 6.7 cm) and DY (43.6 +/- 6.5 cm) as compared to SS (41.7 +/- 6.0 cm). Long jump performance was significantly greater (p < 0.05) following DYV (186.8 +/- 19.5 cm) as compared to DY (182.2 +/- 19.1 cm), which in turn was significantly greater (p < 0.05) than performance following SS (177.2 +/- 18.8 cm). Warm-up protocols that include dynamic exercise may be a viable method of enhancing jumping performance in athletic women as compared to stationary cycling and static stretching. In addition, these data suggest that it may be desirable for athletic women to perform dynamic exercises with a weighted vest on some movements prior to the performance of the long jump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号