首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Myogenin is one of the basic helix-loop-helix proteins that regulate muscle-specific gene expression. Using reverse transciption-polymerase chain reaction (RT-PCR), 5'- and 3'-rapid amplification of cDNA ends (RACE), zebrafish myogenin cDNA was cloned from mRNA of embryos at 10-96 h post-fertilization. The cDNA, at 1384 base pairs (bp), contained a 771-bp open reading frame with 113- and 500-bp flanking regions at the 5'- and 3'-ends, respectively. The deduced amino acid sequences of zebrafish myogenin encoded a 256-amino-acid polypeptide. In a comparison with myogenin of carp, trout, Xenopus, chicken and human, zebrafish myogenin shared 90.9, 77.6, 70.3, 62.9 and 51.5% amino acid identity, respectively. The basic helix-loop-helix domains in myogenin are all conserved. The molecular phylogenic tree demonstrated that myogenin of zebrafish is more closely related to that of fish than to the myogenin of other vertebrates.  相似文献   

7.
8.
Members of the myogenic regulatory gene family, including MyoD, Myf5, Myogenin and MRF4, are specifically expressed in myoblast and skeletal muscle cells and play important roles in regulating skeletal muscle development and growth. They are capable of converting a variety of non-muscle cells into myoblasts and myotubes. To better understand their roles in the development of fish muscles, we have isolated the MyoD genomic genes from gilthead seabream (Sparus aurata), analyzed the genomic structures, patterns of expression and the regulation of muscle-specific expression. We have demonstrated that seabream contain two distinct non-allelic MyoDgenes, MyoD1 and MyoD2. Sequence analysis revealed that these two MyoD genes shared a similar gene structure. Expression studies demonstrated that they exhibited overlapping but distinct patterns of expression in seabream embryos and adult slow and fast muscles. MyoD1 was expressed in adaxial cells that give rise to slow muscles, and lateral somitic cells that give rise to fast muscles. Similarly, MyoD2 was initially expressed in both slow and fast muscle precursors. However, MyoD2 expression gradually disappeared in the adaxial cells of 10- to 15-somite-stage embryos, whereas its expression in fast muscle precursor cells was maintained. In adult skeletal muscles, MyoD1 was expressed in both slow and fast muscles, whereas MyoD2 was specifically expressed in fast muscles. Treating seabream embryos with forskolin, a protein kinase A activator, inhibited MyoD1 expression in adaxial cells, while expression in fast muscle precursors was not affected. Promoter analysis demonstrated that both MyoD1 and MyoD2 promoters could drive green fluorescence protein expression in muscle cells of zebrafish embryos. Together, these data suggest that the two non-allelic MyoD genes are functional in seabream and their expression is regulated differently in fast and slow muscles. Hedgehog signaling is required for induction of MyoDexpression in adaxial cells.  相似文献   

9.
Four myogenic regulatory factors (MRFs); MyoD, Myf-5, MRF4 and Myogenin direct muscle tissue differentiation. Heterodimers of MRFs with E-proteins activate muscle-specific gene expression by binding to E-box motifs d(CANNTG) in their promoters or enhancers. We showed previously that in contrast to the favored binding of E-box by MyoD-E47 heterodimers, homodimeric MyoD associated preferentially with quadruplex structures of regulatory sequences of muscle-specific genes. To inquire whether other MRFs shared the DNA binding preferences of MyoD, the DNA affinities of hetero- and homo-dimeric MyoD, MRF4 and Myogenin were compared. Similarly to MyoD, heterodimers with E47 of MRF4 or Myogenin bound E-box more tightly than quadruplex DNA. However, unlike homodimeric MyoD or MRF4, Myogenin homodimers associated weakly and nonpreferentially with quadruplex DNA. By reciprocally switching basic regions between MyoD and Myogenin we demonstrated dominance of MyoD in determining the quadruplex DNA-binding affinity. Thus, Myogenin with an implanted MyoD basic region bound quadruplex DNA nearly as tightly as MyoD. However, a grafted Myogenin basic region did not diminish the high affinity of homodimeric MyoD for quadruplex DNA. We speculate that the dissimilar interaction of MyoD and Myogenin with tetrahelical domains in muscle gene promoters may differently regulate their myogenic activities.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD   总被引:191,自引:0,他引:191  
W E Wright  D A Sassoon  V K Lin 《Cell》1989,56(4):607-617
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号