首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ClC-1 is a member of a large family of voltage-gated chloride channels, abundantly expressed in human skeletal muscle. Mutations in ClC-1 are associated with myotonia congenita (MC) and result in loss of regulation of membrane excitability in skeletal muscle. We studied the electrophysiological characteristics of six mutants found among Korean MC patients, using patch clamp methods in HEK293 cells. Here, we found that the autosomal dominant mutants S189C and P480S displayed reduced chloride conductances compared to WT. Autosomal recessive mutant M128I did not show a typical rapid deactivation of Cl currents. While sporadic mutant G523D displayed sustained activation of Cl currents in the whole cell traces, the other sporadic mutants, M373L and M609K, demonstrated rapid deactivations. V1/2 of these mutants was shifted to more depolarizing potentials. In order to identify potential effects on gating processes, slow and fast gating was analyzed for each mutant. We show that slow gating of the mutants tends to be shifted toward more positive potentials in comparison to WT. Collectively, these six mutants found among Korean patients demonstrated modifications of channel gating behaviors and reduced chloride conductances that likely contribute to the physiologic changes of MC.  相似文献   

2.
目的:观察甲状旁腺激素(PTH)对成骨细胞中Cl C-3氯通道表达及成骨分化影响,初步探索Cl C-3介导PTH在细胞成骨分化中的作用。方法:采用10-8M、10-9M、10-10M PTH持续刺激和间断刺激MC3T3-E1细胞72 h后,通过CCK-8试剂盒法检测MC3T3-E1细胞的增殖情况,Real-Time PCR法检测MC3T3-E1细胞中Clcn3及成骨相关基因Alp、Runx2的表达情况,免疫荧光法检测10-9M PTH不同给药方式下对Cl C-3蛋白表达的影响。结果 :经不同浓度PTH连续和间断处理72 h后,结果显示10-9 M PTH间断刺激的MC3T3-E1细胞的增殖能力最强,且其Alp、Runx2 m RNA表达均高于10-8 M组和10-10 M组(P<0.05),而相同浓度间断刺激的MC3T3-E1细胞成骨相关基因的表达均高于持续刺激组,以10-9M间断刺激组差异最显著(P<0.05),而10-8 M和10-10M均无统计学差异(P>0.05),10-9 M PTH刺激的MC3T3-E1细胞中Cl C-3蛋白表达也显著增加(P<0.05)。结论 :成骨细胞的Cl C-3氯通道能够响应PTH的刺激发生变化,并伴随着成骨相关基因Alp、Runx2表达的增强。  相似文献   

3.
By defining functional defects in a congenital myasthenic syndrome (CMS), we show that two mutant residues, located in a binding site region of the acetylcholine receptor (AChR) epsilon subunit, exert opposite effects on ACh binding and suppress channel gating. Single channel kinetic analysis reveals that the first mutation, epsilon N182Y, increases ACh affinity for receptors in the resting closed state, which promotes sequential occupancy of the binding sites and discloses rate constants for ACh occupancy of the nonmutant alphadelta site. Studies of the analogous mutation in the delta subunit, deltaN187Y, disclose rate constants for ACh occupancy of the nonmutant alpha epsilon site. The second CMS mutation, epsilon D175N, reduces ACh affinity for receptors in the resting closed state; occupancy of the mutant site still promotes gating because a large difference in affinity is maintained between closed and open states. epsilon D175N impairs overall gating, however, through an effect independent of ACh occupancy. When mapped on a structural model of the AChR binding site, epsilon N182Y localizes to the interface with the alpha subunit, and epsilon D175 to the entrance of the ACh binding cavity. Both epsilon N182Y and epsilon D175 show state specificity in affecting closed relative to desensitized state affinities, suggesting that the protein chain harboring epsilon N182 and epsilon D175 rearranges in the course of receptor desensitization. The overall results show that key residues at the ACh binding site differentially stabilize the agonist bound to closed, open and desensitized states, and provide a set point for gating of the channel.  相似文献   

4.
Calcium signalling through store-operated calcium (SOC) entry is of crucial importance for T-cell activation and the adaptive immune response. This entry occurs via the prototypic Ca2+ release-activated Ca2+ (CRAC) channel. STIM1, a key molecular component of this process, is located in the membrane of the endoplasmic reticulum (ER) and is initially activated upon Ca2+ store depletion. This activation signal is transmitted to the plasma membrane via a direct physical interaction that takes place between STIM1 and the highly Ca2+-selective ion channel Orai1. The activation of STIM1 induces an extended cytosolic conformation. This, in turn, exposes the CAD/SOAR domain and leads to the formation of STIM1 oligomers. In this study, we focused on a small helical segment (STIM1 α3, aa 400–403), which is located within the CAD/SOAR domain. We determined this segment’s specific functional role in terms of STIM1 activation and Orai1 gating. The STIM1 α3 domain appears not essential for STIM1 to interact with Orai1. Instead, it represents a key domain that conveys STIM1 interaction into Orai1 channel gating. The results of cysteine crosslinking experiments revealed the close proximity of STIM1 α3 to a region within Orai1, which was located at the cytosolic extension of transmembrane helix 3, forming a STIM1-Orai1 gating interface (SOGI). We suggest that the interplay between STIM1 α3 and Orai1 TM3 allows STIM1 coupling to be transmitted into physiological CRAC channel activation.  相似文献   

5.
Myotonia congenita belongs to the group of non-dystrophic myotonia caused by mutations of CLCN1gene, which encodes human skeletal muscle chloride channel 1. It can be inherited either in autosomal dominant (Thomsen disease) or recessive (Becker disease) forms. Here we have sequenced all 23 exons and exon-intron boundaries of the CLCN1 gene, in a panel of 5 unrelated Chinese patients with myotonia congenita (2 with dominant and 3 with recessive form). In addition, detailed clinical analysis was performed in these patients to summarize their clinical characteristics in relation to their genotypes. Mutational analyses revealed 7 different point mutations. Of these, we have found 3 novel mutations including 2 missense (R47W, V229M), one splicing (IVS19+2T>C), and 4 known mutations (Y261C,G523D, M560T, G859D). Our data expand the spectrum of CLCN1 mutations and provide insights for genotype–phenotype correlations of myotonia congenita in the Chinese population.  相似文献   

6.
Voltage-gated Cl channels belonging to the ClC family appear to function as homomultimers, but the number of subunits needed to form a functional channel is controversial. To determine subunit stoichiometry, we constructed dimeric human skeletal muscle Cl channels in which one subunit was tagged by a mutation (D136G) that causes profound changes in voltage-dependent gating. Sucrose-density gradient centrifugation experiments indicate that both monomeric and dimeric hClC-1 channels in their native configurations exhibit similar sedimentation properties consistent with a multimeric complex having a molecular mass of a dimer. Expression of the heterodimeric channel in a mammalian cell line results in a homogenous population of Cl channels exhibiting novel gating properties that are best explained by the formation of heteromultimeric channels with an even number of subunits. Heteromultimeric channels were not evident in cells cotransfected with homodimeric WT-WT and D136G-D136G constructs excluding the possibility that functional hClC-1 channels are assembled from more than two subunits. These results demonstrate that the functional hClC-1 unit consists of two subunits.  相似文献   

7.
The CFTR chloride channel is activated by phosphorylation of serine residues in the regulatory (R) domain and then gated by ATP binding and hydrolysis at the nucleotide binding domains (NBDs). Studies of the ATP-dependent gating process in excised inside-out patches are very often hampered by channel rundown partly caused by membrane-associated phosphatases. Since the severed DeltaR-CFTR, whose R domain is completely removed, can bypass the phosphorylation-dependent regulation, this mutant channel might be a useful tool to explore the gating mechanisms of CFTR. To this end, we investigated the regulation and gating of the DeltaR-CFTR expressed in Chinese hamster ovary cells. In the cell-attached mode, basal DeltaR-CFTR currents were always obtained in the absence of cAMP agonists. Application of cAMP agonists or PMA, a PKC activator, failed to affect the activity, indicating that the activity of DeltaR-CFTR channels is indeed phosphorylation independent. Consistent with this conclusion, in excised inside-out patches, application of the catalytic subunit of PKA did not affect ATP-induced currents. Similarities of ATP-dependent gating between wild type and DeltaR-CFTR make this phosphorylation-independent mutant a useful system to explore more extensively the gating mechanisms of CFTR. Using the DeltaR-CFTR construct, we studied the inhibitory effect of ADP on CFTR gating. The Ki for ADP increases as the [ATP] is increased, suggesting a competitive mechanism of inhibition. Single channel kinetic analysis reveals a new closed state in the presence of ADP, consistent with a kinetic mechanism by which ADP binds at the same site as ATP for channel opening. Moreover, we found that the open time of the channel is shortened by as much as 54% in the presence of ADP. This unexpected result suggests another ADP binding site that modulates channel closing.  相似文献   

8.
Mutations in the ClC-7/Ostm1 ion transporter lead to osteopetrosis and lysosomal storage disease. Its lysosomal localization hitherto precluded detailed functional characterization. Using a mutated ClC-7 that reaches the plasma membrane, we now show that both the aminoterminus and transmembrane span of the Ostm1 β-subunit are required for ClC-7 Cl(-)/H(+)-exchange, whereas the Ostm1 transmembrane domain suffices for its ClC-7-dependent trafficking to lysosomes. ClC-7/Ostm1 currents were strongly outwardly rectifying owing to slow gating of ion exchange, which itself displays an intrinsically almost linear voltage dependence. Reversal potentials of tail currents revealed a 2Cl(-)/1H(+)-exchange stoichiometry. Several disease-causing CLCN7 mutations accelerated gating. Such mutations cluster to the second cytosolic cystathionine-β-synthase domain and potential contact sites at the transmembrane segment. Our work suggests that gating underlies the rectification of all endosomal/lysosomal CLCs and extends the concept of voltage gating beyond channels to ion exchangers.  相似文献   

9.
When excised inside-out membrane patches are bathed in symmetrical Cl--rich solutions, the current-voltage (I-V) relationship of macroscopic cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents inwardly rectifies at large positive voltages. To investigate the mechanism of inward rectification, we studied CFTR Cl- channels in excised inside-out membrane patches from cells expressing wild-type human and murine CFTR using voltage-ramp and -step protocols. Using a voltage-ramp protocol, the magnitude of human CFTR Cl- current at +100 mV was 74 +/- 2% (n = 10) of that at -100 mV. This rectification of macroscopic CFTR Cl- current was reproduced in full by ensemble currents generated by averaging single-channel currents elicited by an identical voltage-ramp protocol. However, using a voltage-step protocol the single-channel current amplitude (i) of human CFTR at +100 mV was 88 +/- 2% (n = 10) of that at -100 mV. Based on these data, we hypothesized that voltage might alter the gating behavior of human CFTR. Using linear three-state kinetic schemes, we demonstrated that voltage has marked effects on channel gating. Membrane depolarization decreased both the duration of bursts and the interburst interval, but increased the duration of gaps within bursts. However, because the voltage dependencies of the different rate constants were in opposite directions, voltage was without large effect on the open probability (Po) of human CFTR. In contrast, the Po of murine CFTR was decreased markedly at positive voltages, suggesting that the rectification of murine CFTR is stronger than that of human CFTR. We conclude that inward rectification of CFTR is caused by a reduction in i and changes in gating kinetics. We suggest that inward rectification is an intrinsic property of the CFTR Cl- channel and not the result of pore block.  相似文献   

10.
The physiologically indispensable chloride channel (CLC) family is split into two classes of membrane proteins: chloride channels and chloride/proton antiporters. In this article we focus on the relationship between these two groups and specifically review the role of protons in chloride-channel gating. Moreover, we discuss the evidence for proton transport through the chloride channels and explore the possible pathways that the protons could take through the chloride channels. We present results of a mutagenesis study, suggesting the feasibility of one of the pathways, which is closely related to the proton pathway proposed previously for the chloride/proton antiporters. We conclude that the two groups of CLC proteins, although in principle very different, employ similar mechanisms and pathways for ion transport.  相似文献   

11.
The ClC channel family consists of chloride channels important for various physiological functions. Two members in this family, ClC-0 and ClC-1, share approximately 50-60% amino acid identity and show similar gating behaviors. Although they both contain two subunits, the number of pores present in the homodimeric channel is controversial. The double-barrel model proposed for ClC-0 was recently challenged by a one-pore model partly based on experiments with ClC-1 exploiting cysteine mutagenesis followed by modification with methanethiosulfonate (MTS) reagents. To investigate the pore stoichiometry of ClC-0 more rigorously, we applied a similar strategy of MTS modification in an inactivation-suppressed mutant (C212S) of ClC-0. Mutation of lysine 165 to cysteine (K165C) rendered the channel nonfunctional, but modification of the introduced cysteine by 2-aminoethyl MTS (MTSEA) recovered functional channels with altered properties of gating-permeation coupling. The fast gate of the MTSEA-modified K165C homodimer responded to external Cl(-) less effectively, so the P(o)-V curve was shifted to a more depolarized potential by approximately 45 mV. The K165C-K165 heterodimer showed double-barrel-like channel activity after MTSEA modification, with the fast-gating behaviors mimicking a combination of those of the mutant and the wild-type pore, as expected for the two-pore model. Without MTSEA modification, the heterodimer showed only one pore, and was easier to inactivate than the two-pore channel. These results showed that K165 is important for both the fast and slow gating of ClC-0. Therefore, the effects of MTS reagents on channel gating need to be carefully considered when interpreting the apparent modification rate.  相似文献   

12.
Molecular dissection of gating in the ClC-2 chloride channel.   总被引:17,自引:0,他引:17       下载免费PDF全文
The ClC-2 chloride channel is probably involved in the regulation of cell volume and of neuronal excitability. Site-directed mutagenesis was used to understand ClC-2 activation in response to cell swelling, hyperpolarization and acidic extracellular pH. Similar to equivalent mutations in ClC-0, neutralizing Lys566 at the end of the transmembrane domains results in outward rectification and a shift in voltage dependence, but leaves the basic gating mechanism, including swelling activation, intact. In contrast, mutations in the cytoplasmic loop between transmembrane domains D7 and D8 abolish all three modes of activation by constitutively opening the channel without changing its pore properties. These effects resemble those observed with deletions of an amino-terminal inactivation domain, and suggest that it may act as its receptor. Such a 'ball-and-chain' type mechanism may act as a final pathway in the activation of ClC-2 elicited by several stimuli.  相似文献   

13.
Cystic fibrosis transmembrane conductance regulator (CFTR) channel opening and closing are driven by cycles of adenosine triphosphate (ATP) binding–induced formation and hydrolysis-triggered disruption of a heterodimer of its cytoplasmic nucleotide-binding domains (NBDs). Although both composite sites enclosed within the heterodimer interface contain ATP in an open CFTR channel, ATP hydrolysis in the sole catalytically competent site causes channel closure. Opening of the NBD interface at that site then allows ADP–ATP exchange. But how frequently, and how far, the NBD surfaces separate at the other, inactive composite site remains unclear. We assessed separation at each composite site by monitoring access of nucleotide-sized hydrophilic, thiol-specific methanothiosulfonate (MTS) reagents to interfacial target cysteines introduced into either LSGGQ-like ATP-binding cassette signature sequence (replacing equivalent conserved serines: S549 and S1347). Covalent MTS-dependent modification of either cysteine while channels were kept closed by the absence of ATP impaired subsequent opening upon ATP readdition. Modification while channels were opening and closing in the presence of ATP caused macroscopic CFTR current to decline at the same speed as when the unmodified channels shut upon sudden ATP withdrawal. These results suggest that the target cysteines can be modified only in closed channels; that after modification the attached MTS adduct interferes with ATP-mediated opening; and that modification in the presence of ATP occurs rapidly once channels close, before they can reopen. This interpretation was corroborated by the finding that, for either cysteine target, the addition of the hydrolysis-impairing mutation K1250R (catalytic site Walker A Lys) similarly slowed, by an order of magnitude, channel closing on ATP removal and the speed of modification by MTS reagent in ATP. We conclude that, in every CFTR channel gating cycle, the NBD dimer interface separates simultaneously at both composite sites sufficiently to allow MTS reagents to access both signature-sequence serines. Relatively rapid modification of S1347C channels by larger reagents—MTS-glucose, MTS-biotin, and MTS-rhodamine—demonstrates that, at the noncatalytic composite site, this separation must exceed 8 Å.  相似文献   

14.
Cell volume can be altered by two different ways, swelling and shrinkage. Cell swelling is regulated by volume-regulated Cl channel (VRC). It is not well understood whether shrinkage is regulated by VRC. We previously found that antisense oligonucleotide specific to ClC-3 (ClC-3 antisense) prevented cell proliferation, which was related to cell swell volume regulation. In the present study, we further studied the role of ClC-3 Cl channel in cell apoptosis which was related to cell shrinkage volume regulation by using antisense oligonucleotide specific to ClC-3 (ClC-3 antisense) and ClC-3 cDNA transfection techniques. We found that thapsigargin (TG), a specific inhibitor of the endoplasmic reticulum calcium ATPase, evoked apoptotic morphological changes (including cytoplasmic blebbing, condensation of nuclear chromatin, and the formation of apoptotic bodies), DNA laddering, and caspase-3 activation in PC12 cells (Pheochromocytoma-derived cell line). TG increased the cell apoptotic population with a decrease in cell viability. These effects were consistent with the decrease in endogenous ClC-3 protein expression, which was also induced by TG. Overexpression of ClC-3 significantly inhibited TG effect on PC12 cell apoptosis, whereas the ClC-3 antisense produced opposite effects and facilitated apoptosis induced by TG. Our data strongly suggest that ClC-3 channel in PC12 cells mediates TG-induced apoptotic process through inhibitory mechanism. Thus, it appears that ClC-3 Cl channel mediates both cell proliferation and apoptosis through accelerative and inhibitory fashions, respectively. These authors contributed equally to this work.  相似文献   

15.
Glycine receptors (GlyRs) are chloride channels that mediate fast inhibitory neurotransmission and are members of the pentameric ligand-gated ion channel (pLGIC) family. The interface between the ligand binding domain and the transmembrane domain of pLGICs has been proposed to be crucial for channel gating and is lined by a number of charged and aromatic side chains that are highly conserved among different pLGICs. However, little is known about specific interactions between these residues that are likely to be important for gating in α1 GlyRs. Here we use the introduction of cysteine pairs and the in vivo nonsense suppression method to incorporate unnatural amino acids to probe the electrostatic and hydrophobic contributions of five highly conserved side chains near the interface, Glu-53, Phe-145, Asp-148, Phe-187, and Arg-218. Our results suggest a salt bridge between Asp-148 in loop 7 and Arg-218 in the pre-M1 domain that is crucial for channel gating. We further propose that Phe-145 and Phe-187 play important roles in stabilizing this interaction by providing a hydrophobic environment. In contrast to the equivalent residues in loop 2 of other pLGICs, the negative charge at Glu-53 α1 GlyRs is not crucial for normal channel function. These findings help decipher the GlyR gating pathway and show that distinct residue interaction patterns exist in different pLGICs. Furthermore, a salt bridge between Asp-148 and Arg-218 would provide a possible mechanistic explanation for the pathophysiologically relevant hyperekplexia, or startle disease, mutant Arg-218 → Gln.  相似文献   

16.
Opening of CLC chloride channels is coupled to the translocation of the permeant anion. From the recent structure determination of bacterial CLC proteins in the closed and open configuration, a glutamate residue was hypothesized to form part of the Cl--sensitive gate. The negatively charged side-chain of the glutamate was suggested to occlude the permeation pathway in the closed state, while opening of a single protopore of the double-pore channel would reflect mainly a movement of this side-chain toward the extracellular pore vestibule, with little rearrangement of the rest of the channel. Here we show that mutating this critical residue (Glu166) in the prototype Torpedo CLC-0 to alanine, serine, or lysine leads to constitutively open channels, whereas a mutation to aspartate strongly slowed down opening. Furthermore, we investigated the interaction of the small organic channel blocker p-chlorophenoxy-acetic acid (CPA) with the mutants E166A and E166S. Both mutants were strongly inhibited by CPA at negative voltages with a >200-fold larger affinity than for wild-type CLC-0 (apparent KD at -140 mV approximately 4 micro M). A three-state linear model with an open state, a low-affinity and a high-affinity CPA-bound state can quantitatively describe steady-state and kinetic properties of the CPA block. The parameters of the model and additional mutagenesis suggest that the high-affinity CPA-bound state is similar to the closed configuration of the protopore gate of wild-type CLC-0. In the E166A mutant the glutamate side chain that occludes the permeation pathway is absent. Thus, if gating consists only in movement of this side-chain the mutant E166A should not be able to assume a closed conformation. It may thus be that fast gating in CLC-0 is more complex than anticipated from the bacterial structures.  相似文献   

17.
Charged residues in the beta10-M1 linker region ("pre-M1") are important in the expression and function of neuromuscular acetylcholine receptors (AChRs). The perturbation of a salt bridge between pre-M1 residue R209 and loop 2 residue E45 has been proposed as being a principle event in the AChR gating conformational "wave." We examined the effects of mutations to all five residues in pre-M1 (positions M207-P211) plus E45 in loop 2 in the mouse alpha(1)-subunit. M207, Q208, and P211 mutants caused small (approximately threefold) changes in the gating equilibrium constant (K(eq)), but the changes for R209, L210, and E45 were larger. Of 19 different side chain substitutions at R209 on the wild-type background, only Q, K, and H generated functional channels, with the largest change in K(eq) (67-fold) from R209Q. Various R209 mutants were functional on different E45 backgrounds: H, Q, and K (E45A), H, A, N, and Q (E45R), and K, A, and N (E45L). Phi values for R209 (on the E45A background), L210, and E45 were 0.74, 0.35, and 0.80, respectively. Phi values for R209 on the wt and three other backgrounds could not be estimated because of scatter. The average coupling energy between 209/45 side chains (six different pairs) was only -0.33 kcal/mol (for both alpha subunits, combined). Pre-M1 residues are important for expression of functional channels and participate in gating, but the relatively modest changes in closed- vs. open-state energy caused mutations, the weak coupling energy between these residues and the functional activity of several unmatched-charge pairs are not consistent with the perturbation of a salt bridge between R209 and E45 playing the principle role in gating.  相似文献   

18.
Myotonia congenita belongs to the group of non-dystrophic myotonia caused by mutations of CLCN1gene, which encodes human skeletal muscle chloride channel 1. It can be inherited either in autosomal dominant (Thomsen disease) or recessive (Becker disease) forms. Here we have sequenced all 23 exons and exon-intron boundaries of the CLCN1 gene, in a panel of 5 unrelated Chinese patients with myotonia congenita (2 with dominant and 3 with recessive form). In addition, detailed clinical analysis was performed in these patients to summarize their clinical characteristics in relation to their genotypes. Mutational analyses revealed 7 different point mutations. Of these, we have found 3 novel mutations including 2 missense (R47W, V229M), one splicing (IVS19+2T>C), and 4 known mutations (Y261C,G523D, M560T, G859D). Our data expand the spectrum of CLCN1 mutations and provide insights for genotype–phenotype correlations of myotonia congenita in the Chinese population.  相似文献   

19.
Previously, we demonstrated that ADP inhibits cystic fibrosis transmembrane conductance regulator (CFTR) opening by competing with ATP for a binding site presumably in the COOH-terminal nucleotide binding domain (NBD2). We also found that the open time of the channel is shortened in the presence of ADP. To further study this effect of ADP on the open state, we have used two CFTR mutants (D1370N and E1371S); both have longer open times because of impaired ATP hydrolysis at NBD2. Single-channel kinetic analysis of DeltaR/D1370N-CFTR shows unequivocally that the open time of this mutant channel is decreased by ADP. DeltaR/E1371S-CFTR channels can be locked open by millimolar ATP with a time constant of approximately 100 s, estimated from current relaxation upon nucleotide removal. ADP induces a shorter locked-open state, suggesting that binding of ADP at a second site decreases the locked-open time. To test the functional consequence of the occupancy of this second nucleotide binding site, we changed the [ATP] and performed similar relaxation analysis for E1371S-CFTR channels. Two locked-open time constants can be discerned and the relative distribution of each component is altered by changing [ATP] so that increasing [ATP] shifts the relative distribution to the longer locked-open state. Single-channel kinetic analysis for DeltaR/E1371S-CFTR confirms an [ATP]-dependent shift of the distribution of two locked-open time constants. These results support the idea that occupancy of a second ATP binding site stabilizes the locked-open state. This binding site likely resides in the NH2-terminal nucleotide binding domain (NBD1) because introducing the K464A mutation, which decreases ATP binding affinity at NBD1, into E1371S-CFTR shortens the relaxation time constant. These results suggest that the binding energy of nucleotide at NBD1 contributes to the overall energetics of the open channel conformation.  相似文献   

20.
Neurotoxic misfolding of Cu, Zn‐superoxide dismutase (SOD1) is implicated in causing amyotrophic lateral sclerosis, a devastating and incurable neurodegenerative disease. Disease‐linked mutations in SOD1 have been proposed to promote misfolding and aggregation by decreasing protein stability and increasing the proportion of less folded forms of the protein. Here we report direct measurement of the thermodynamic effects of chemically and structurally diverse mutations on the stability of the dimer interface for metal free (apo) SOD1 using isothermal titration calorimetry and size exclusion chromatography. Remarkably, all mutations studied, even ones distant from the dimer interface, decrease interface stability, and increase the population of monomeric SOD1. We interpret the thermodynamic data to mean that substantial structural perturbations accompany dimer dissociation, resulting in the formation of poorly packed and malleable dissociated monomers. These findings provide key information for understanding the mechanisms and energetics underlying normal maturation of SOD1, as well as toxic SOD1 misfolding pathways associated with disease. Furthermore, accurate prediction of protein–protein association remains very difficult, especially when large structural changes are involved in the process, and our findings provide a quantitative set of data for such cases, to improve modelling of protein association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号