首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Syndecan proteoglycans may be key regulators of tumor invasion and metastasis because this four-member family of transmembrane receptors regulates cell adhesion, proliferation, and differentiation. Their expression can also serve as prognostic markers. In breast carcinomas, syndecan-1 overexpression correlates with poor prognosis and aggressive phenotype. Syndecan-4 is expressed in most breast carcinoma cell lines, but its role in malignancy is unclear. A possible relationship between syndecan-1 and syndecan-4 expression and established prognostic factors in breast carcinomas was examined. Duplicate samples of 114 benign and malignant breast disease cases were stained for the two syndecans. Clinicopathological information was available for all cases. Syndecan-1 was detected in 72.8% of cases, with significant association between its expression and histological tumor type (p<0.05) and high grade tumors (p<0.05). Syndecan-4 was expressed in 66.7% of cases; expression correlated significantly with positive estrogen (p<0.01) and progesterone (p<0.01) receptor status. Independent expression of the two syndecans was noted from an analysis of single and double positive cases. There was a statistical relationship between syndecan-1 presence in high-grade tumors and absence of syndecan-4, whereas syndecan-4 presence in cases positive for estrogen and progesterone receptor associated with syndecan-1 absence. These syndecans may, therefore, have distinct roles in regulating breast carcinoma cell behavior.  相似文献   

2.
One of the hallmarks of cells undergoing mitotic division is their rounded morphology and reduced adhesion to the substratum. We have studied and compared the attachment of interphase and mitotic cells to substrata coated with fibronectin and vitronectin. We have found that adhesion of mitotic cells, as compared to interphase cells, is significantly reduced to fibronectin, but is higher to vitronectin. These results correlate well with the expression of α5β1 and αVβ3 integrins, the respective receptors for fibronectin and vitronectin, on the cell surface. Mitotic cells show higher levels of αVβ3 and very low levels of α5β1 proteins on the cell surface as compared to interphase cells. This difference in the levels of these integrins also reflects in the total amounts of fibronectin and vitronectin present on the cell surface of these cells. We have further shown, by flow cytometry, that binding of vitronectin, or the synthetic peptide-GRGDSP-, causes an increase in the intracellular levels of Ca2− in mitotic cells, but no change is seen in the interphase cells. Binding of fibronectin to either of these cells fails to elicit any response. One interesting feature of our results is that the levels of total, i.e., cytoplasmic plus membrane bound, α5β1 and αVβ3 integrins of mitotic and interphase cells remain the same, thus implying an alteration in the distribution of integrin chains between the plasma membrane and the cytoplasm during the conversion of interphase cells into the mitotic phase. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Ablation of syndecan-1 in mice is a gain of function mutation that enables mice to significantly resist infection by several bacterial pathogens. Syndecan-1 shedding is induced by bacterial virulence factors, and inhibition of shedding attenuates bacterial virulence, whereas administration of purified syndecan-1 ectodomain enhances virulence, suggesting that bacteria subvert syndecan-1 ectodomains released by shedding for their pathogenesis. However, the pro-pathogenic functions of syndecan-1 ectodomain have yet to be clearly defined. Here, we examined how syndecan-1 ectodomain enhances Staphylococcus aureus virulence in injured mouse corneas. We found that syndecan-1 ectodomain promotes S. aureus corneal infection in an HS-dependent manner. Surprisingly, we found that this pro-pathogenic activity is dependent on 2-O-sulfated domains in HS, indicating that the effects of syndecan-1 ectodomain are structure-based. Our results also showed that purified syndecan-1 ectodomain and heparan compounds containing 2-O-sulfate motifs inhibit S. aureus killing by antimicrobial factors secreted by degranulated neutrophils, but does not affect intracellular phagocytic killing by neutrophils. Immunodepletion of antimicrobial factors with staphylocidal activities demonstrated that CRAMP, a cationic antimicrobial peptide, is primarily responsible for S. aureus killing among other factors secreted by degranulated neutrophils. Furthermore, we found that purified syndecan-1 ectodomain and heparan compounds containing 2-O-sulfate units potently and specifically inhibit S. aureus killing by synthetic CRAMP. These results provide compelling evidence that a specific subclass of sulfate groups, and not the overall charge of HS, permits syndecan-1 ectodomains to promote S. aureus corneal infection by inhibiting a key arm of neutrophil host defense.  相似文献   

4.
The present study provides direct evidence that syndecan 2 participates selectively in the induction of stress fiber formation in cooperation with integrin α5β1 through specific binding of its heparan sulfate side chains to the fibronectin substrate. Our previous study with Lewis lung carcinoma-derived P29 cells demonstrated that the cell surface heparan sulfate proteoglycan, which binds to fibronectin, is syndecan 2 (N. Itano et al., 1996, Biochem. J. 315, 925–930). We here report that in vitro treatment of the cells by antisense oligonucleotide for syndecan 2 resulted in a failure to form stress fibers on fibronectin substrate in association with specific suppression of its cell surface expression. Instead, localization of actin filaments in the cytoplasmic cortex occurred. A similar response of the cells was observed when the cells were treated to eliminate functions of cell surface heparan sulfates, including exogenous addition of heparin and pretreatment with anti-heparan sulfate antibody, F58-10E4, and with proteinase-free heparitinase I. Size- and structure-defined oligosaccharides prepared from heparin and chemically modified heparins were utilized as competitive inhibitors to examine the structural characteristics of the cell surface heparan sulfates involved in organization of the actin cytoskeleton. Their affinity chromatography on a column linked with a recombinant H-271 peptide containing a C-terminal heparin-binding domain of fibronectin demonstrated that 2-O-sulfated iduronates were essential for the binding. Inhibition studies revealed that a heparin-derived dodecasaccharide sample enriched with an IdoA(2OS)–GlcNS(6OS) disaccharide completely blocked binding of the syndecan 2 ectodomain to immobilized H-271 peptide. Finally, the dodecasaccharide sample was shown to inhibit stress fiber formation, triggered by adhesion of P29 cells to a CH-271 polypeptide consisting of both the RGD cell-binding and the C-terminal heparin-binding domains of fibronectin in a fused form. All these results consistently suggest that syndecan 2 proteoglycan interacts with the C-terminal heparin-binding domain of fibronectin at the highly sulfated cluster(s), such as [IdoA(2OS)–GlcNS(6OS)]6 present in its heparan sulfate chains, to result in the induction of stress fiber formation in cooperation with integrin α5β1.  相似文献   

5.
Dendritic spines are small protrusions that receive synapses, and changes in spine morphology are thought to be the structural basis for learning and memory. We demonstrate that the cell surface heparan sulfate proteoglycan syndecan-2 plays a critical role in spine development. Syndecan-2 is concentrated at the synapses, specifically on the dendritic spines of cultured hippocampal neurons, and its accumulation occurs concomitant with the morphological maturation of spines from long thin protrusions to stubby and headed shapes. Early introduction of syndecan-2 cDNA into immature hippocampal neurons, by transient transfection, accelerates spine formation from dendritic protrusions. Deletion of the COOH-terminal EFYA motif of syndecan-2, the binding site for PDZ domain proteins, abrogates the spine-promoting activity of syndecan-2. Syndecan-2 clustering on dendritic protrusions does not require the PDZ domain-binding motif, but another portion of the cytoplasmic domain which includes a protein kinase C phosphorylation site. Our results indicate that syndecan-2 plays a direct role in the development of postsynaptic specialization through its interactions with PDZ domain proteins.  相似文献   

6.
Unlocking the secrets of syndecans: transgenic organisms as a potential key   总被引:3,自引:0,他引:3  
Heparan sulfate proteoglycans are known to modulate the activity of a large number of extracellular ligands thereby having the potential to regulate a great diversity of biological processes. The long-term studies in our laboratory have focused on the syndecans, one of the major cell surface heparan sulfate proteoglycan families. Most early work on syndecans involved biochemical studies that provided initial information on their structure and putative biological roles. In recent years, the development of transgenic organisms has allowed a more complete understanding of syndecan function. Studies with transgenic syndecan-1 and syndecan-3 mice have demonstrated an unforeseen role for syndecans in the regulation of feeding behavior. Syndecan-1 knockout mice display a reduced susceptibility to both Wnt-induced tumorigenesis and microbial pathogenesis. Experiments with Drosophila show that syndecan is first expressed upon cellularization in the early embryo, and may play a role in the early developmental stages of the fly. This review focuses on these diverse functions of the syndecans that have been elucidated by the use of transgenic mice and Drosophila as model systems. Published in 2003.  相似文献   

7.
The integrin α4β1 is involved in mediating exfiltration of leukocytes from the vasculature. It interacts with a number of proteins up-regulated during the inflammatory response including VCAM-1 and the CS-1 alternatively spliced region of fibronectin. In addition it binds the multifunctional protein osteopontin (OPN), which can act as both a cytokine and an extracellular matrix molecule. Here we map the region of human OPN that supports cell adhesion via α4β1 using GST fusion proteins. We show that α4β1 expressed in J6 cells interacts with intact OPN when the integrin is in a high activation state, and by deletion mapping that the α4β1 binding region in OPN lies between amino acid residues 125 and 168 (aa125–168). This region contains the central RGD motif of OPN, which also interacts with integrins αvβ3, αvβ5, αvβ1, α8β1, and α5β1. Mutating the RGD motif to RAD had no effect on the interaction with α4β1. To define the binding site the region incorporating aa125–168 was divided into 5 overlapping peptides expressed as GST fusion proteins. Two peptides supported adhesion via α4β1, aa132–146, and aa153–168; of these only a synthetic peptide, SVVYGLR (aa162–168), derived from aa153–168 was able to inhibit α4β1 binding to CS-1. These data identify the motif SVVYGLR as a novel peptide inhibitor of α4β1, and the primary α4β1 binding site within OPN.  相似文献   

8.
Summary Fibronectin and heparin-binding growth factors (HBGF) are essential for growth of cultured endothelial cells. The stimulation of endothelial cell growth by HBGF type one (HBGF-1) in particular requires heparin or a similar glycosaminoglycan. The requirement for fibronectin and heparin for HBGF-1-stimulated endothelial cell growth may be related. HBGF-1 absorbed to the natural subcellular matrix of endothelial cells supports cell growth. [125I]HBGF-1 specifically associates with a sequentially reconstituted matrix of collagen-fibronectin-heparin, and HBGF-1 absorbed to the reconstituted matrix supports growth of the endothelial cells. A reconstituted matrix of collagen-laminin-heparin neither supported binding of [125I]HBGF-1 nor HBGF-1-stimulated endothelial cell growth. Association kinetics of [125I]HBGF-1 to heparinlike sites and membrane receptor sites on endothelial cell monolayers suggest that fibronectin-heparinlike binding sites in the subcellular matrix may be an obligatory reservoir of active HBGF-1 that binds to specific cell membrane receptors. This work was carried out in the laboratory of Dr. W. L. McKeehan and supported in part by grants CA37589, DK35310 and DK38639 from the Public Health Service, Department of Health and Human Services, Washington, DC.  相似文献   

9.
CASK, the rat homolog of a gene (LIN-2) required for vulval differentiation in Caenorhabditis elegans, is expressed in mammalian brain, but its function in neurons is unknown. CASK is distributed in a punctate somatodendritic pattern in neurons. By immunogold EM, CASK protein is concentrated in synapses, but is also present at nonsynaptic membranes and in intracellular compartments. This immunolocalization is consistent with biochemical studies showing the presence of CASK in soluble and synaptosomal membrane fractions and its enrichment in postsynaptic density fractions of rat brain. By yeast two-hybrid screening, a specific interaction was identified between the PDZ domain of CASK and the COOH terminal tail of syndecan-2, a cell surface heparan sulfate proteoglycan (HSPG). The interaction was confirmed by coimmunoprecipitation from heterologous cells. In brain, syndecan-2 localizes specifically at synaptic junctions where it shows overlapping distribution with CASK, consistent with an interaction between these proteins in synapses. Cell surface HSPGs can bind to extracellular matrix proteins, and are required for the action of various heparin-binding polypeptide growth/differentiation factors. The synaptic localization of CASK and syndecan suggests a potential role for these proteins in adhesion and signaling at neuronal synapses.  相似文献   

10.
Heparin/heparan sulfate interact with growth factors, chemokines, extracellular proteins, and receptors. Integrins are αβ heterodimers that serve as receptors for extracellular proteins, regulate cell behavior, and participate in extracellular matrix assembly. Heparin binds to RGD‐dependent integrins (αIIbβ3, α5β1, αvβ3, and αvβ5) and to RGD‐independent integrins (α4β1, αXβ2, and αMβ2), but their binding sites have not been located on integrins. We report the mapping of heparin binding sites on the ectodomain of αvβ3 integrin by molecular modeling. The surface of the ectodomain was scanned with small rigid probes mimicking the sulfated domains of heparan sulfate. Docking results were clustered into binding spots. The best results were selected for further docking simulations with heparin hexasaccharide. Six potential binding spots containing lysine and/or arginine residues were identified on the ectodomain of αvβ3 integrin. Heparin would mostly bind to the top of the genu domain, the Calf‐I domain of the α subunit, and the top of the β subunit of RGD‐dependent integrins. Three spots were close enough from each other on the integrin surface to form an extended binding site that could interact with heparin/heparan sulfate chains. Because heparin does not bind to the same integrin site as protein ligands, no steric hindrance prevents the formation of ternary complexes comprising the integrin, its protein ligand, and heparin/heparan sulfate. The basic amino acid residues predicted to interact with heparin are conserved in the sequences of RGD‐dependent but not of RGD‐independent integrins suggesting that heparin/heparan sulfate could bind to different sites on these two integrin subfamilies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
We characterized β1 integrin subunit expression on three different cultures of benign human nevomelanocytes (NMC) and on four different cell cultures of human dysplastic nevus (DN) cells by flow cytometry analysis and examined their role in mediating cell spreading and migration on collagen type IV (CN IV) and laminin (LN) coated substrates by using a quantitative video image analysis system. The seven human NMC and DNC cultures expressed heterogeneous levels of β1, α2, α3 and α6 integrin subunits. Image analysis showed that a significant increase (P<0.001) in cell spreading and migration of the DN cells was induced on increasing coating concentrations of CN IV and LN. However, the NMC did not show an increase in cell spreading or migration on these substrates when compared to the substrates coated with denatured BSA only. The CN IV-induced cell spreading of the DN cells was significantly inhibited by anti-β1 mAb (AIIB2), anti-α2 mAb (P1E6), or anti-α3 mAb (P1B5), but not by mAb against α6 integrin subunit (GoH3). The DN cell spreading on LN was not significantly inhibited by these mAbs. In contrast, the migration of the DN on CN IV and LN was significantly inhibited by anti-β1 mAb, anti-α2 mAb, anti-α3 mAb and anti-α6 mAb. These data suggest that the α2 and α3 subunit are important for cell spreading of the DN on CN IV, although they are less important in cell spreading on the extracellular matrix component LN. The α2, α3 and α6 integrin subunits are important for the migration of DN cells on both CN IV and LN.  相似文献   

12.
Muscular dystrophies are characterized by continuous cycles of degeneration and regeneration that result in extensive fibrosis and a progressive diminution of muscle mass. Cell surface heparan sulfate proteoglycans are found almost ubiquitously on the surface and in the extracellular matrix (ECM) of mammalian cells. These macromolecules interact with a great variety of ligands, including ECM constituents, adhesion molecules, and growth factors. In this study, we evaluated the expression and localization of three heparan sulfate proteoglycans in the biopsies of Duchenne muscular dystrophy (DMD) patients. Through SDS-PAGE analyses followed by specific identification of heparitinase-digested proteins with an anti-Delta-heparan sulfate specific monoclonal antibodies, we observed an increase of three forms of heparan sulfate proteoglycans, corresponding to perlecan, syndecan-3, and glypican-1. Immunohistochemistry analyses indicated a differential localization for these proteoglycans: glypican-1 and perlecan were found mainly associated to ECM structures, while syndecan-3 was associated to muscle fibers. These results suggest that the amount of specific heparan sulfate proteoglycans is augmented in skeletal muscle in DMD patients presenting a differential localization.  相似文献   

13.
Abnormal mesangial extracellular matrix remodeling by mesangial cells (MCs) is the hallmark of progressive glomerulonephritis (GN). We recently showed, using a type I collagen gel contraction assay, that α1β1 integrin-dependent MC adhesion and migration are necessary cell behaviors for collagen matrix remodeling. To further determine the mechanism of α1β1 integrin-mediated collagen remodeling, we studied the signaling pathways of MCs that participate in the regulation of collagen gel contraction. Immunoprecipitation and phosphotyrosine detection revealed that gel contraction is associated with the enhanced activity and phosphorylation of ERK1/2 by MCs. The tyrosine kinase inhibitors herbimycin and genistein inhibited collagen gel contraction dose dependently. Furthermore, targeting ERK1/2 activity with a MEK inhibitor, PD98059, and antisense ERK1/2 hindered gel contraction in a dose-dependent manner. Similar inhibitory effects on gel contraction and ERK1/2 phosphorylation were observed when MC-mediated gel contraction was performed in the presence of function-blocking anti-α1 or anti-β1 integrin antibodies. However, cell adhesion and migration assays indicated that PD98059 and antisense ERK1/2 blocked α1β1 integrin-dependent MC migration, but did not interfere with collagen adhesion, although there was a marked decrease in ERK1/2 phosphorylation and ERK1/2 protein expression in cell adhesion on type I collagen. None of the above could affect membrane expression of α1β1 integrin. These results suggested that ERK1/2 activation is critical for the α1β1 integrin-dependent MC migration necessary for collagen matrix reorganization. We therefore conclude that ERK1/2 may serve as a possible target for pharmacological inhibition of pathological collagen matrix formation in GN.  相似文献   

14.
During tissue morphogenesis and tumor invasion, epithelial cells must undergo intercellular rearrangement in which cells are repositioned with respect to one another and the surrounding mesenchymal extracellular matrix. Using three-dimensional aggregates of squamous epithelial cells, we show that such intercellular rearrangements can be triggered by activation of β1 integrins after their ligation with extracellular matrices. On nonadherent substrates, multicellular aggregates (MCAs) formed rapidly via E-cadherin junctional complexes and over time became compacted spheroids exhibiting a more epithelial phenotype. After MCAs were replated on culture substrates, the spheroids collapsed to yield tightly arranged cell monolayers. Cell–cell contact induced rapid elevation in E-cadherin levels, which was due to an increase in the metabolic stability of junctional receptors. During MCA remodeling of cell–cell adhesions, and monolayer formation, their E-cadherin levels fell rapidly. Similar behavior was obtained regardless of which ECM ligand—collagen type I, fibronectin, or laminin 1—MCAs were seeded on. In contrast, when seeded onto a matrix elaborated by squamous epithelial cells, cells in the MCA attached, spread, lost cell–cell junctions, and dispersed. Analysis identified laminin 5 as the active ECM ligand in this matrix, and MCA dispersion required functional β1 integrin and specifically α3β1. Furthermore, substrate-immobilized anti-integrin antibody effectively reproduced the epithelial–mesenchymal-like transition induced by the laminin 5 matrix. During the early stages of aggregate rearrangement and collapse, cells on laminin 5 substrates, but not those on collagen I substrates, exhibited intense cortical arrays of F-actin, microspikes, and fascin accumulation at their peripheral surfaces. These results suggest that engagement of specific integrin–ligand pairs regulates cadherin junctional adhesions during events common to epithelial morphogenesis and tumor invasion.  相似文献   

15.
Integrins are transmembrane proteins linking the extracellular matrix or certain cell–cell contacts to the cytoskeleton. To study integrin–cytoskeleton interactions we wanted to relate talin–integrin interaction to integrin function in cell spreading and formation of focal adhesions. For talin-binding studies we used fusion proteins of glutathione S-transferase and the cytoplasmic domain of integrin β1 (GST-cytoβ1) expressed in bacteria. For functional studies chimeric integrins containing the extracellular and transmembrane parts of β3 linked to the cytoplasmic domain of β1 were expressed in CHO cells as a dimer with the αIIb subunit. Point mutations in the amino acid sequence N785PIY788 of β1 disrupted both the integrin–talin interaction and the ability of the integrin to mediate cell spreading. COOH-terminal truncation of β1 at the amino acid position 797 disrupted its ability to mediate cell spreading, whereas the disruption of talin binding required deletion of five more amino acids (truncation at position 792). A synthetic peptide from this region of β1 (W780DTGENPIYKSAV792) bound to purified talin and inhibited talin binding to GST-cytoβ1. The ability of the mutants to mediate focal adhesion formation or to codistribute to focal adhesions formed by other integrins correlated with their ability to mediate cell spreading. These results confirm the previous finding that a talin-binding site in the integrin β1 tail resides at or close to the central NPXY motif and suggest that the integrin–talin interaction is necessary but not sufficient for integrin-mediated cell spreading.  相似文献   

16.
Laminins, a family of heterotrimeric proteins with cell adhesive/signaling properties, are characteristic components of basement membranes of vasculature and tissues. In the present study, permeabilized platelets were found to react with a monoclonal antibody to laminin γ1 chain by immunofluorescence. In Western blot analysis of platelet lysates, several monoclonal antibodies to γ1 and β1 laminin chains recognized 220- to 230-kDa polypeptides, under reducing conditions, and a structure with much slower electrophoretic mobility under nonreducing conditions. Immunoaffinity purification on a laminin β1 antibody–Sepharose column yielded polypeptides of 230, 220, 200, and 180 kDa from platelet lysates. In the purified material, mAbs to β1 and γ1 reacted with the two larger polypeptides, while affinity-purified rabbit antibodies to laminin α4 chain recognized the smallest polypeptide. Identity of the polypeptides was confirmed by microsequencing. One million platelets contained on average 1 ng of laminin (approximately 700 molecules per cell), of which 20–35% was secreted within minutes after stimulation with either thrombin or phorbol ester. Platelets adhered to plastic surfaces coated with the purified platelet laminin, and this process was largely inhibited by antibodies to β1 and α6 integrin chains. We conclude that platelets contain and, following activation, secrete laminin-8 (α4β1γ1) and that the cells adhere to the protein by using α6β1 integrin.  相似文献   

17.
Neurocan is one of the major chondroitin sulfate proteoglycans of perinatal rodent brain. HEK-293 cells producing neurocan recombinantly show changes in their behavior. The expression of full-length neurocan led to a detachment of the secreting cells and the formation of floating spheroids. This occurred in the continuous presence of 10% fetal bovine serum in the culture medium. Cells secreting fragments of neurocan-containing chondroitin sulfate chains and the C-terminal domain of the molecule showed a similar behavior, whereas cells expressing fragments of neurocan-containing chondroitin sulfate chains but lacking parts of the C-terminal domain did not show spheroid formation. Cells secreting the hyaluronan-binding N-terminal domain of neurocan showed an enhanced adhesiveness. When untransfected HEK-293 cells were plated on a surface conditioned by spheroid-forming cells, they also formed spheroids. This effect could be abolished by chondroitinase treatment of the conditioned surface. The observations indicate that the ability of the chondroitin sulfate proteoglycan neurocan to modulate the adhesive character of extracellular matrices is dependent on the structural integrity of the C-terminal domain of the core protein.  相似文献   

18.
The interaction between the Alzheimer amyloid precursor protein (APP) and an intact extracellular matrix (ECM), matrigel, obtained from Engelbreth-Holm-Swarm tumors was evaluated. Based on quantitative analyses of the binding data obtained from solid phase binding assays, two binding sites on the ECM were identified for [125I]-APP (with apparent Kd1 of 1.0 × 10 −11 M and Kd2 of 1.6 × 10 −9 M respectively). Over 70% of [125I]-APP was displaced by heparin and N-desulfated heparin but not by chondroitin sulfate. Pretreatment of matrigel with heparitinase decreased the binding of [125I]-APP by 80%. β-amyloid peptides (residues 1–40, 1–28, and 1–16) containing a heparin binding domain also displaced 80% of bound [125I]-APP, which was totally displaced by intact APP. The binding of [125I]-APP to matrigel increased by 210% with a decrease in the pH. These observations suggest that [125I]-APP interacts mainly with heparan sulfate proteoglycan present in the ECM. The binding of [125I]-APP to individual ECM components was also analyzed. [125I]-APP was found to bind laminin and collagen type IV but not fibronectin. However, when these ECM constituents were combined, the extent of APP-binding decreased significantly, to levels comparable to those obtained with intact matrigel, suggesting that multiple interactions may occur between ECM constituents and [125I]-APP. The results are discussed in terms of APP function and amyloidogenesis. J. Cell. Biochem. 65:145–158. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Perlecan (Pln) is an abundant heparan sulfate (HS) proteoglycan in the pericellular matrix of developing cartilage, and its absence dramatically disrupts endochondral bone formation. This study examined two previously unexamined aspects of the function of Pln in mesenchymal chondrogenesis in vitro. Using the well-established high-density micromass model of chondrogenic differentiation, we first examined the requirement for endogenous Pln synthesis and secretion through the use of Pln-targeted ribozymes in murine C3H10T1/2 embryonic fibroblasts. Second, we examined the ability of the unique N-terminal, HS-bearing Pln domain I (PlnDI) to synergize with exogenous bone morphogenetic protein-2 (BMP-2) to support later stage chondrogenic maturation of cellular condensations. The results provide clear evidence that the function of Pln in late stage chondrogenesis requires Pln biosynthesis and secretion, because 60%-70% reductions in Pln greatly diminish chondrogenic marker expression in micromass culture. Additionally, these data support the idea that while early chondrocyte differentiation can be supported by exogenous HS-decorated PlnDI, efficient late stage PlnDI-supported chondrogenesis requires both BMP-2 and Pln biosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号