首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although long-term depression (LTD) is a well-studied form of synaptic plasticity, it is clear that multiple cellular mechanisms are involved in its induction. In the leech, LTD is observed in a polysynaptic connection between touch mechanosensory neurons (T cells) and the S interneuron following low frequency stimulation. LTD elicited by 450 s low frequency stimulation was blocked by N-methyl-d-aspartic acid (NMDA) receptor antagonists. However, LTD elicited by 900 s low frequency stimulation was insensitive to NMDA receptor antagonists and was instead dependent on cannabinoid signaling. This LTD was blocked by both a cannabinoid receptor antagonist and by inhibition of diacylglycerol lipase, which is necessary for the synthesis of the cannabinoid transmitter 2-arachidonyl glycerol (2-AG). Bath application of 2-AG or the cannabinoid receptor agonist CP55 940 also induced LTD at this synapse. These results indicate that two forms of LTD coexist at the leech T-to-S polysynaptic pathway: one that is NMDA receptor-dependent and another that is cannabinoid-dependent and that activation of either form of LTD is dependent on the level of activity in this circuit. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
There is a point of view that N-methyl-D-aspartate (NMDA) receptor subunit-specific signaling outcomes determine the direction of modifications of efficacy of synaptic transmission. Activation of NMDA receptors that contain the 2A subunit promotes LTP, while LTD requires activation of NMDA receptors containing 2B subunit. However, this hypothesis is inconsistent with some experimental data. For explanation of these data, we put forward an alternative hypothesis. According to this hypothesis, the activation of diverse subtypes of NMDA receptors can lead to ether LTP or LTD depending on the relation between posttetanic Ca2+ rise and increase in postsynaptic Ca2+ concentration produced by previous stimulation. Activation of NMDA receptors with 2B subunit can promote LTD of excitatory input to the pyramidal cell due to presence of these receptors on inhibitory interneurons, induction of the LTP in interneuron, and potentiation of inhibitory transmission between the interneuron and the target pyramidal cell.  相似文献   

3.
TRPV1 receptors have classically been defined as heat-sensitive, ligand-gated, nonselective cation channels that integrate nociceptive stimuli in sensory neurons. TRPV1 receptors have also been identified in the brain, but their physiological role is poorly understood. Here we report that TRPV1 channel activation is necessary and sufficient to trigger long-term synaptic depression (LTD). Excitatory synapses onto hippocampal interneurons were depressed by either capsaicin, a potent TRPV1 channel activator, or the endogenously released eicosanoid, 12-(S)-HPETE, whereas neighboring excitatory synapses onto CA1 pyramidal cells were unaffected. TRPV1 receptor antagonists also prevented interneuron LTD. In brain slices from TRPV1-/- mice, LTD was absent, and neither capsaicin nor 12-(S)-HPETE elicited synaptic depression. Our results suggest that, in the hippocampus, TRPV1 receptor activation selectively modifies synapses onto interneurons. Like other forms of hippocampal synaptic plasticity, TRPV1-mediated LTD may have a role in long-term changes in physiological and pathological circuit behavior during learning and epileptic activity.  相似文献   

4.
Leukotriene E4 (LTE4) is shown to be a partial agonist of leukotriene D4 (LTD4) in differentiated U-937 cells. The data that support this conclusion are: 1) LTE4 completely displaced [3H]LTD4 from its receptors in U-937 cell membranes. 2) LTE4 induced only 30 +/- 4% of the maximal Ca2+ transient induced by LTD4 in the presence of 1 mM extracellular Ca2+ and 60 +/- 4% of the maximal LTD4 response in the absence of extracellular Ca2+. 3) LTE4 induced only a fraction of the inositol phosphates metabolized by LTD4. Moreover, LTE4 resulted in essentially no production of the inositol 1,4,5-trisphosphate isomer, while LTD4 induced a rapid and substantial transient increase in this isomer. The generation of inositol phosphates by both agonists was unaffected by extracellular Ca2+. 4) The EC50 values for Ca2+ mobilization for LTD4 and LTE4 corresponded with their affinity (Kd values) for the LTD4 receptor. 5) A series of structurally diverse LTD4 receptor antagonists blocked the Ca2+ mobilization responses to LTD4 and LTE4 with identical rank orders of potency. 6) LTE4 acted as an antagonist of LTD4 of potency. 6) LTE4 acted as an antagonist of LTD4 effects when they were coadministered. 7) LTE4 and LTD4 acutely desensitized Ca2+ mobilization to each other. All of the effects of LTE4 are explained by its partial agonist activity at the LTD4 receptor as shown by the following data. 1) Neither LTD4 nor LTE4 had any effect on the agonist activity of fMet-Leu-Phe, LTB4, or platelet-activating factor. 2) None of the above agonists or antagonists to the above receptors affected any of the activities of LTD4 or LTE4. 3) Neither LTD4 nor LTE4 induced desensitization of Ca2+ mobilization to any of the non-LTD4 receptor agonists tested. 4) Under the conditions studied, we have not observed any evidence of multiple subclasses of LTD4 receptors in U-937 cells. LTE4 is a partial agonist of the LTD4 receptor, because it can only couple the LTD4 receptor to a portion of the signaling system available to the receptor when occupied by LTD4. Specifically, LTD4 caused the activation of receptor-operated calcium channels, mobilization of intracellular Ca2+, the activation of phosphatidylinositol-phospholipase C, and the liberation of an additional, as yet undefined, intracellular mediator. To do this, LTD4 receptors couple to at least two and perhaps more guanine nucleotide binding proteins. LTE4 is unable to activate the phosphatidylinositol-phospholipase C but can mimic the other effects of LTD4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The human dopamine D2L (long form) and D2S (short form) receptors were expressed separately in mouse Ltk- fibroblast cells to investigate whether there is a difference in transmembrane signaling of these D2 receptors. Both receptors induced two signals, a phosphatidylinositol-linked mobilization of intracellular calcium and an inhibition of cyclic adenosine 3'-5' monophosphate (cAMP) accumulation, each with similar response magnitudes and identical pharmacology. Both calcium and cAMP signals were sensitive to pretreatment with pertussis toxin (PTX), indicating mediation by coupling to Gi/Go proteins. However, the two forms of D2 receptor were distinguished by acute prior activation of protein kinase C (PKC) with 12-O-tetradecanoyl 4 beta-phorbol 13-acetate (TPA): TPA blocked the D2S-mediated increase in cytosolic free calcium concentration ([Ca2+]i) in a concentration-dependent manner (between 10 nM and 1 microM), whereas the D2L receptor-induced increase in [Ca2+]i was resistant to TPA and was only partially (60%) inhibited by 100 microM TPA. By contrast, TPA did not alter the inhibition of cAMP accumulation induced by activation of either D2S or D2L receptors. We conclude that, in the L cell system, prior activation of PKC differentially modulates the transmembrane signaling of the D2L and D2S receptors, preferentially inhibiting the D2S receptor-mediated calcium signal but not altering the dopamine-induced inhibitory cAMP signal of either receptor subtype.  相似文献   

6.
The goal of this work was to study possible mechanisms underlying the potentiation of vasopressor response to serotonin observed in traumatic shock. Experiments with isolated aorta and mesenteric artery of the rat showed that vasoconstriction is caused by the activation of 5HT2A receptors. Agonists of 5HT1B, 5HT1D, 5HT2B, and 5HT4 receptors induced vasodilation. Agonists of 5HT1A receptors had a dual effect determined by interaction with α1-adrenergic receptors and 5HT1A receptors. Plasma membrane depolarization with 15 mM KCl increased the vasoconstrictive force in response to serotonin. This effect was determined by the ability of KCl to activate voltage-gated calcium channels, as a result of which the intracellular calcium stores are replenished. Inhibition of the response to serotonin by ketanserin, a 5HT2A receptor blocker, did not depend on the presence of 15 mM KCl. Constriction in response to serotonin was potentiated after its addition to vessels preconstricted with noradrenaline or endothelin-1. The constriction response partially retained in the presence of 2 × 10?7 M ketanserin, which completely suppressed the serotonin-induced constriction of dilated vessels both at normal membrane potential and after plasma membrane depolarization. It can be assumed that noradrenalin and endothelin-1 alter the characteristics of 5HT2A receptors and possibly 5HT1A receptors as a result of their heterodimerization with the receptors for these vasoconstrictive hormones or receptor-receptor interaction at the level of signaling systems. Along with the potentiating effect of KCl, this mechanism may underlie the enhancement of vasopressor response to serotonin in shock.  相似文献   

7.

Background  

The formylpeptide receptor family members FPR and FPRL1, expressed in myeloid phagocytes, belong to the G-protein coupled seven transmembrane receptor family (GPCRs). They share a high degree of sequence similarity, particularly in the cytoplasmic domains involved in intracellular signaling. The established model of cell activation through GPCRs states that the receptors isomerize from an inactive to an active state upon ligand binding, and this receptor transformation subsequently activates the signal transducing G-protein. Accordingly, the activation of human neutrophil FPR and FPRL1 induces identical, pertussis toxin-sensitive functional responses and a transient increase in intracellular calcium is followed by a secretory response leading to mobilization of receptors from intracellular stores, as well as a release of reactive oxygen metabolites.  相似文献   

8.
The high affinity receptor for immunoglobulin (Ig) E on mast cells, along with the antigen receptors on T and B cells and Fc receptors for IgG, belongs to a class of receptors which lack intrinsic kinase activity, but activate non-receptor tyrosine and serine/threonine kinases. Receptor engagement triggers a chain of signaling events leading from protein phosphorylation to activation of phosphatidylinositol-specific phospholipase C, an increase in intracellular calcium levels, and ultimately the activation of more specialized functions. IgE receptor disengagement leads to reversal of phosphorylation by undefined phosphatases and to inhibition of activation pathways. Here we show that phenylarsine oxide, a chemical which reacts with thiol groups and has been reported to inhibit tyrosine phosphatases, uncouples the IgE receptor-mediated phosphorylation signal from activation of phosphatidyl inositol metabolism, the increase in intracellular calcium levels, and serotonin release. Phenylarsine oxide inhibits neither the kinases (tyrosine and serine/threonine) phosphorylating the receptor and various cellular substrates nor, unexpectedly, the phosphatases responsible for the dephosphorylation following receptor disengagement. By contrast, it abolishes the receptor-mediated phosphorylation of phospholipase C-gamma 1, but not phospholipase C activity in vitro. Therefore the phosphorylation and activation of phospholipase C likely requires a phenylarsine oxide-sensitive element. Receptor aggregation thus activates at least two distinct phosphorylation pathways: a phenylarsine oxide-insensitive pathway leading to phosphorylation/dephosphorylation of the receptor and of various substrates and a sensitive pathway leading to phospholipase C-gamma 1 phosphorylation.  相似文献   

9.
There are conflicting results concerning the receptor subtype(s) involved in calcium-mediated endothelin signaling in the glial cells. In order to elucidate the role of endothelin A and B receptors in these processes, we have studied the effect of a complex spectrum of endothelin receptor ligands on intracellular calcium concentration changes in proliferating and differentiated C6 rat glioma cells. Cell differentiation was induced by dibutyryl-cAMP and assessed by the glial fibrillar acidic protein content. Intracellular calcium changes were measured in cell suspensions using fluorescent probe Fura-2. The specific endothelin B receptor agonists sarafotoxin S6c and IRL-1620 did not influence the intracellular calcium concentration. However, calcium changes induced by endothelin-1 and especially by endothelin-3 after the pretreatment of cells with one of these endothelin B receptor specific agonists were significantly enhanced even above the values attained by the highest effective endothelin concentrations alone. Such endothelin B-receptor ligand-induced sensitization of calcium signaling was not observed in differentiated C6 cells. Moreover, endothelin-induced calcium oscillations in differentiated C6 cells were less inhibited by BQ-123 and BQ-788 than in their proliferating counterparts. In conclusion, the specific activation of endothelin B receptor in C6 rat glioma cells does not affect intracellular calcium per se, but probably does so through interaction with the endothelin A receptor. The pattern and/or functional parameters of endothelin receptors in C6 rat glioma cells are modified by cell differentiation.  相似文献   

10.
The proinflammatory mediator leukotriene D(4) (LTD(4)) binds to the seven-transmembrane receptor CYSLT(1). Although this leukotriene plays an important biological role, its intracellular signaling pathways are only partly known. In previous experiments, we found that LTD(4) induced tyrosine phosphorylation and translocation of phospholipase (PLC)-gamma1 to a plasma membrane fraction in a human epithelial cell line (Int 407). In the present study, we further examined these signaling events and found that LTD(4) induced a rapid interaction between Gbetagamma subunits and PLC-gamma1; results obtained with GST fusion proteins of PLC-gamma1 suggest that this interaction is mediated via the pleckstrin homology domain of PLC-gamma1. Moreover, LTD(4) induced an increased association of c-Src with PLC-gamma1, and the selective Src family tyrosine kinase inhibitor PP1 blocked both LTD(4)-induced tyrosine phosphorylation of PLC-gamma1 and the association of PLC-gamma1 with Gbetagamma subunits. The relevance of these observations in intracellular calcium signaling was investigated by microinjecting cells with anti-Gbeta, anti-PLC-gamma1, or anti-c-Src antibodies and by pretreatment with PP1. LTD(4)-induced calcium mobilization was blocked by each of the indicated antibodies (but not isotype-matched control antibodies) and by PP1. Our data suggest that Gbetagamma subunits can, directly or indirectly, serve as membrane-bound partners for PLC-gamma1 and c-Src and that each of these proteins is essential for LTD(4)-induced downstream PLC-gamma1 signaling.  相似文献   

11.
The human α1D-adrenergic receptor is a seven transmembrane-domain protein that mediates many of the physiological actions of adrenaline and noradrenaline and participates in the development of hypertension and benign prostatic hyperplasia. We recently reported that different phosphorylation patterns control α1D-adrenergic receptor desensitization. However, to our knowledge, there is no data regarding the role(s) of this receptor's specific phosphorylation residues in its subcellular localization and signaling. In order to address this issue, we mutated the identified phosphorylated residues located on the third intracellular loop and carboxyl tail. In this way, we experimentally confirmed α1D-AR phosphorylation sites and identified, in the carboxyl tail, two groups of residues in close proximity to each other, as well as two individual residues in the proximal (T442) and distal (S543) regions. Our results indicate that phosphorylation of the distal cluster (T507, S515, S516 and S518) favors α1D-AR localization at the plasma membrane, i. e., substitution of these residues for non-phosphorylatable amino acids results in the intracellular localization of the receptors, whereas phospho-mimetic substitution allows plasma membrane localization. Moreover, we found that T442 phosphorylation is necessary for agonist- and phorbol ester-induced receptor colocalization with β-arrestins. Additionally, we observed that substitution of intracellular loop 3 phosphorylation sites for non-phosphorylatable amino acids resulted in sustained ERK1/2 activation; additional mutations in the phosphorylated residues in the carboxyl tail did not alter this pattern. In contrast, mobilization of intracellular calcium and receptor internalization appear to be controlled by the phosphorylation of both third-intracellular-loop and carboxyl terminus-domain residues. In summary, our data indicate that a) both the phosphorylation sites present in the third intracellular loop and in the carboxyl terminus participate in triggering calcium signaling and in turning-off α1D-AR-induced ERK activation; b) phosphorylation of the distal cluster appears to play a role in receptor's plasma membrane localization; and c) T442 appears to play a critical role in receptor phosphorylation and receptor-β-arrestin colocalization.  相似文献   

12.
Death domain-containing members of the tumor necrosis factor (TNF) receptor family ("death receptors") can induce apoptosis upon stimulation by their natural ligands or by agonistic antibodies. Activated death receptors recruit death domain adapter proteins like Fas-associated death domain protein (FADD), and this ultimately leads to proteolytic activation of the caspase cascade and cell death. Recently, FADD has also been implicated in the regulation of proliferation; functional inhibition of FADD results in p53-dependent impairment of proliferation in activated T-cells. In this study we have further analyzed T-cells derived from transgenic mice expressing a dominant negative FADD mutant (FADD DN) under control of the lck promoter in vitro so as to identify the signaling pathways that become engaged upon T-cell receptor stimulation and that are regulated by death receptors. FADD DN expression inhibits T-cell proliferation, both at the G(0) --> S transition and in the G(1) phase of continuously proliferating cells. We observe a decrease in the release of calcium from intracellular stores after T-cell receptor stimulation, whereas influx of extracellular calcium seems to be unaffected. FADD DN-expressing fibroblasts show a similarly inhibited cell growth and impaired calcium mobilization indicating that the modulation of proliferation and calcium response by death receptors is not cell type-specific.  相似文献   

13.
Long term depression (LTD) in the CA1 region of the hippocampus, induced with a 20-Hz, 30 s tetanus to Schaffer collaterals, is enhanced in sleep-deprived (SD) rats. In the present study, we investigated the role of metabotropic glutamate receptors (mGluRs), γ-aminobutyric acid (GABA) B receptors (GABA(B)-Rs) and N-methyl-D-aspartic acid receptors (NMDARs) in the LTD of the population excitatory postsynaptic potential (pEPSP). The requirement of Ca(2+) from L- and T-type voltage-gated calcium channels (VGCCs) and intracellular stores was also studied. Results indicate that mGluRs, a release of Ca(2+) from intracellular stores and GABA(B)-Rs are required for LTD. Interestingly, while mGlu1Rs seem to be involved in both short-term depression and LTD, mGlu5Rs appear to participate mostly in LTD. CGP 55845, a GABA(B)-R antagonist, partially suppressed LTD in normally sleeping (NS) rats, while completely blocking LTD in SD rats. Moreover, GS-39783, a positive allosteric modulator for GABA(B)-R, suppressed the pEPSP in SD, but not NS rats. Since both mGluRs and GABA(B)-Rs seem to be involved in the LTD, especially in SD rats, we examined if the receptor expression pattern and/or dimerization changed, using immunohistochemical, co-localization and co-immunoprecipitation techniques. Sleep-deprivation induced an increase in the expression of GABA(B)-R1 and mGlu1αR in the CA1 region of the hippocampus. In addition, co-localization and heterodimerization between mGlu1αR/GABA(B)-R1 and mGlu1αR/GABA(B)-R2 is enhanced in SD rats. Taken together, our findings present a novel form of LTD sensitive to the activation of mGluRs and GABA(B)-Rs, and reveal, for the first time, that sleep-deprivation induces alterations in the expression and dimerization of these receptors.  相似文献   

14.
Five cognate G protein-coupled receptors (S1P(1-5)) have been shown to mediate various cellular effects of sphingosine 1-phosphate (S1P). Here we report the generation of mice null for S1P(2) and for both S1P(2) and S1P(3). S1P(2)-null mice were viable and fertile and developed normally. The litter sizes from S1P(2)S1P(3) double-null crosses were remarkably reduced compared with controls, and double-null pups often did not survive through infancy, although double-null survivors lacked any obvious phenotype. Mouse embryonic fibroblasts (MEFs) were examined for the effects of receptor deletions on S1P signaling pathways. Wild-type MEFs were responsive to S1P in activation of Rho and phospholipase C (PLC), intracellular calcium mobilization, and inhibition of forskolin-activated adenylyl cyclase. S1P(2)-null MEFs showed a significant decrease in Rho activation, but no effect on PLC activation, calcium mobilization, or adenylyl cyclase inhibition. Double-null MEFs displayed a complete loss of Rho activation and a significant decrease in PLC activation and calcium mobilization, with no effect on adenylyl cyclase inhibition. These data extend our previous findings on S1P(3)-null mice and indicate preferential coupling of the S1P(2) and S1P(3) receptors to Rho and PLC/Ca(2+) pathways, respectively. Although either receptor subtype supports embryonic development, deletion of both produces marked perinatal lethality, demonstrating an essential role for combined S1P signaling by these receptors.  相似文献   

15.
Glycosaminoglycans (GAG) are sulfated polysaccharides that play an important role in regulating cell functions. GAG mimetics called RGTAs (for ReGeneraTing Agents) have been shown to stimulate tissue repair. In particular they accelerate myogenesis, in part via their heparin-mimetic property towards growth factors. RGTAs also increase activity of calcium-dependent intracellular protease suggesting an effect on calcium cellular homeostasis. This effect was presently investigated on myoblasts in vitro using one member of the RGTA family molecule named OTR4120. We have shown that OTR4120 or heparin induced transient increases of intracellular calcium concentration ([Ca2+]i) in pre-fusing myoblasts from both mouse SolD7 cell line and rat skeletal muscle satellite cells grown in primary culture by mobilising sarcoplasmic reticulum store. This [Ca2+]i was not mediated by ryanodine receptors but instead resulted from stimulation of the Inositol-3 phosphate-phospholipase C activation pathway. OTR4120-induced calcium transient was not mediated through an ATP, nor a tyrosine kinase, nor an acetylcholine receptor but principally through serotonin 5-HT2A receptor. This original finding shows that the GAG mimetic can induce calcium signal through serotonin receptors and the IP3 pathway may be relevant to its ability to favour myoblast differentiation. It supports a novel and unexpected function of GAGs in the regulation of calcium homeostasis.  相似文献   

16.
A hypothetic mechanism explaining the influence of various neuromodulators and modifiable disynaptic inhibition on the long-term potentiation and depression (LTP and LTD) of excitatory inputs to granule and pyramidal hippocampal cells is proposed. According to this mechanism, facilitation of the LTD/LTP of excitatory inputs to an inhibitory interneuron caused by the action of a neuromodulator on a receptor bound with Gi/0/(Gs or Gq/11) protein can reduce/augment the GABA release, weaken/intensify the target cell inhibition, and promote the induction of the LTP/LTD of excitatory inputs to this cell. In the absence of the inhibition, the same neuromodulator would promote the LTD/LTP induction in the target cell by activating the same receptor types. The resulting effect of a neuromodulator on a target cell depends on the ratio between the "strengths" of its excitatory and inhibitory inputs, on the presence of receptors of the same or different types at the interneuron and the target cell, and on the neuromodulator concentration due to its different affinity for receptors, interaction with which provide its influence on postsynaptic processes in opposite directions. The consequences of suggested mechanism are in agreement with the known experimental data.  相似文献   

17.
Regulation of Jak kinases by intracellular leptin receptor sequences   总被引:11,自引:0,他引:11  
Leptin signals the status of body energy stores via the leptin receptor (LR), a member of the Type I cytokine receptor family. Type I cytokine receptors mediate intracellular signaling via the activation of associated Jak family tyrosine kinases. Although their COOH-terminal sequences vary, alternatively spliced LR isoforms (LRa-LRd) share common NH(2)-terminal sequences, including the first 29 intracellular amino acids. The so-called long form LR (LRb) activates Jak-dependent signaling and is required for the physiologic actions of leptin. In this study, we have analyzed Jak activation by intracellular LR sequences under the control of the extracellular erythropoeitin (Epo) (Epo receptor/LRb chimeras). We show that Jak2 is the requisite Jak kinase for signaling by the LRb intracellular domain and confirm the requirement for the Box 1 motif for Jak2 activation. A minimal LRb intracellular domain for Jak2 activation includes intracellular amino acids 31-48. Although the sequence requirements for intracellular amino acids 37-48 are flexible, intracellular amino acids 31-36 of LRb play a critical role in Jak2 activation and contain a loose homology motif found in other Jak2-activating cytokine receptors. The failure of short form sequences to function in Jak2 activation reflects the absence of this motif.  相似文献   

18.
A muscarinic acetylcholine receptor (mAChR), DM1, expressed in the nervous system of Drosophila melanogaster, has been stably expressed in a Drosophila S2 cell line (S2-DM1) and used to investigate spatiotemporal calcium changes following agonist activation. Carbamylcholine (CCh) and oxotremorine are potent agonists, whereas application of the vertebrate M1 mAChR agonist, McN-A-343, results in a weak response. Activation of S2-DM1 receptors using CCh resulted in an increase in intracellular calcium ([Ca2+]i) that was biphasic. Two distinct calcium sources were found to contribute to calcium signaling: (1) internal stores that are sensitive to both thapsigargin and 2-aminoethoxydiphenyl borate and (2) capacitative calcium entry. Spatiotemporal imaging of individual S2-DM1 cells showed that the CCh-induced [Ca2+]i transient resulted from a homogeneous calcium increase throughout the cell, indicative of calcium release from internal stores. In contrast, ionomycin induced the formation of a "calcium ring" at the cell periphery, consistent with external calcium influx.  相似文献   

19.
GPR81 is an orphan G protein-coupled receptor (GPCR) that has a high degree of homology to the nicotinic acid receptor GPR109A. GPR81 expression is highly enriched and specific in adipocytes. However, the function and signaling properties of GPR81 are unknown because of the lack of natural or synthetic ligands. Using chimeric G proteins that convert Gi-coupled receptors to Gq-mediated inositol phosphate (IP) accumulation, we show that GPR81 can constitutively increase IP accumulation in HEK293 cells and suggest that GPR81 couples to the Gi signaling pathway. We also constructed a chimeric receptor that expresses the extracellular domains of cysteinyl leukotriene 2 receptor (CysLT2R) and the intracellular domains of GPR81. We show that the CysLT2R ligand, leukotriene D(4) (LTD4), is able to activate this chimeric receptor through activation of the Gi pathway. In addition, LTD4 is able to inhibit lipolysis in adipocytes expressing this chimeric receptor. These results suggest that GPR81 couples to the Gi signaling pathway and that activation of the receptor may regulate adipocyte function and metabolism. Hence, targeting GPR81 may lead to the development of a novel and effective therapy for dyslipidemia and a better side effect profile than nicotinic acid.  相似文献   

20.
Mechanical clearance of inhaled dust particles and microorganisms is an important part of the innate defense mechanisms of mammalian airways. Airway epithelia are composed of various cell types with different degrees of cell polarity. Serous cells regulate composition and volume of luminal periciliary fluid and mucus. Autocrine, paracrine, or neuronal messengers determine the secretory and reabsorptive rates of electrolytes and water via cAMP-or inositol triphosphate/calcium-mediated intracellular signals. Comparison of the expression of calcium-mobilizing receptor types (G protein-coupled-, growth factor-, and cytokine receptors) in two types of human immortalized airway epithelial cells (S9, 16HBE14o-) revealed that receptor populations were qualitatively and quantitatively different in the two cell types. Sustained calcium signals were elicited by activation of purinergic receptors in 16HBE14o-cells or muscarinic acetylcholine or histamine receptors in S9 cells. These G protein-coupled receptors mobilized calcium from intracellular stores and activated capacitative calcium influx. The experimental cells may represent different types of original airway epithelial cells and seem to be suited as model cells to study cell signaling and protein expression during interaction with pathogens or their secretory products (e.g., virulence factors).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号