首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eggs of the silver pomfret,Pampus argenteus, were collected and artificially fertilized by stripping fully-ripe male and female broodstock caught by gillnets in Kuwait waters during June 1997. Larvae hatched from fertilized eggs were reared until 90 days after hatching (DAH) in water temperatures of 27–30°C. Newly-hatched larvae grew from an average of 2.4 mm in body length (BL) to 3.7, 4.4, 7.2 and 8.4 mm at 8, 12, 24 and 30 DAH, respectively. Myomere and vertebral numbers ranged from 34 to 36. Transformation from the larval to juvenile form was completed at 22.2 mm BL (40 DAH). Dorsal and anal fin spines first appeared when juveniles reached 38.8 mm BL (50 DAH). Body depth increased with increase in body length; a rapid increase in body depth occurred in larvae 7.1–8.0 mm, reaching 57% of BL, and further increased to 69% of BL in juveniles 38.8 to 47.9 mm. Pigmentation during development is described and illustrated.  相似文献   

2.
Synopsis The vulnerability of white perch, Morone americana, larvae to yearling bluegill, Lepomis macrochira, predators was examined in relation to larval size, nutritional condition and relative abundance of alternative prey. Short-term (15 min) predation trials were conducted in 381 tanks in the laboratory. Larval vulnerability was measured as the proportion of larvae killed and the proportion of successful attacks per predator in each 15 min trial. No significant differences in vulnerability were apparent among larvae regardless of feeding history at sizes < 6 mm SL. At larval lengths > 6 mm SL, size of larvae was the crucial determinant of their vulnerability. Percentage of larvae killed in 15 min was nearly 100% at sizes < 6 mm SL, decreased to 30% at a length of 12.0 mm SL and dropped to 18% at 14.0 mm SL. Larvae initially feeding at low food levels for 2–4 d exhibited decreased growth of 13–25% over the first 3 wks of life, and simulations based on laboratory results indicated that these growth deficits could result in 5- to 68-fold decreases in survivorship at 38 days after hatching (DAH). The relative abundance of alternative prey also had a pronounced effect on mortality of larvae. A 10-fold increase in alternative prey (Daphnia magna) abundance decreased bluegill predation rates on white perch larvae by 10–20%, while a 100-fold increase in Daphnia density decreased larval mortality by 75–90%.  相似文献   

3.
We investigated the effects of the timing of first feeding (larvae in F0, F1, F2, F3 and S were first fed on day 3, 4, 5, 6 days after hatching (DAH) and unfed, respectively) on feeding, morphological changes, survival and growth in miiuy croaker larvae at 24°C. The fed larvae initiated feeding on 3 DAH and reached point of no return (PNR) on 6 DAH. Larvae in F0 and F1 groups survived apparently better than F2 group at the end of the experiment on 36 DAH. High larval mortality occurred from 3 to 7 DAH in all feeding groups, accounting for 40% (F0, F1 and F2 groups) to 90% (F3 and S groups) of the total mortality. Larvae in F0 and F1 groups grew better than F2 group throughout the experiment. Eye diameter, body height, head height and mouth gape of the first feeding larvae were more sensitive to starvation than other morphometrics and could be used as indicators for evaluating their nutritional status. Results indicated that delayed first feeding over 1 day after yolk exhaustion could lead to poor larval survival and growth. To avoid starvation and obtain good growth in culturing, larvae feeding should be initiated within 1 day after yolk exhaustion at 24°C.  相似文献   

4.
A study was conducted to compare growth and survival of Hucho taimen larvae from 21 to 76 days after hatch (DAH) fed one of three diets: formulated feed alone (group F); a co‐feeding diet of water fleas, tubifex and formulated feed (group C); or live food of water fleas and tubifex (group L), and to investigate the potential use of dietary L‐alanyl‐L‐glutamine (L‐AG) in larval taimen for a more nutritious starter diet. Triplicate groups of 5000 fish were randomly assigned to each aquarium provided with water from a flow‐through system, and fed to apparent satiation. The results show that larvae can feed efficiently on floating crumbled particles of formulated feed. Weight gain of larvae fed only formulated feed was significantly lower than other groups at 34 DAH (P < 0.05). At the end of the experiment, weight gain reached the highest value in group F and was lowest in group L (P < 0.05). Condition factor reached the highest values in group F and lowest in group C (P < 0.05). Specific growth rate was in accordance with weight gain at 76 DAH. Survival showed no differences among the groups (P > 0.05). In conclusion, H. taimen larvae can be fed formulated feed alone and L‐AG may be used as a feeding attractant during the weaning process, which should lead to a better understanding in the rearing improvement in the feeding of larvae.  相似文献   

5.
Japanese flounder Paralichthys olivaceus larvae established first feeding 3 days after hatching (DAH) at c . 17° C. Non-fed fish reached irreversible starvation at age 5 DAH. Non-fed fish showed similar feeding rate and feeding intensity as the fed fish when they were provided with prey before 5 DAH, after which the starved larvae did not feed even when prey became available. None of the six morphological measurements examined (total length, body height, eye height, head height, gut height and myotome height) showed significant differences between the non-fed and fed larvae until 5 DAH. Normal development continued only in the fed group, and the non-fed larvae showed reverse growth or body collapse after 5 DAH. Owing to the shrinkage and collapse at the top of head due to starvation, head height could be a sensitive indicator of starvation in Japanese flounder larvae. In the fed treatments, high mortality occurred from first feeding (3 DAH) to irreversible starvation (5 DAH), accounting for about two-thirds to three-quarters of the overall mortality (46–52%) throughout the experiments. This mortality was not prey density or larval density dependent. Mortality during the same period in the non-fed larvae accounted for about a third of the overall mortality (100%).  相似文献   

6.
For organisms with complex life cycles, the transition between life stages can act as a significant demographic and selective bottleneck. Variation in developmental and growth rates among individuals present in one stage (e.g. larvae), due to initial differences in parental input and/or environmental conditions experienced, can propagate to future stages (e.g. juveniles), and such ‘carry‐over effects’ can shape fitness and phenotypic distributions within a population. However, variation in the strength of carry‐over effects between life stages and the intensity of selective mortality acting on intrinsic variation, and how these might be mediated by environmental variability in natural systems, is poorly known. Here, we evaluate variation in the strength to which larval growth histories can mediate juvenile performance (growth and survival), for a reef fish (Forsterygion lapillum) common to rocky reefs of New Zealand. We used otoliths to reconstruct demographic histories of recently settled fish that were sampled across cohorts, sites and microhabitats. We quantified sources of variation in the strength of carry‐over effects and selective mortality that operate on larval growth histories. We found overall that individuals that grew fast as larvae tended to experience proportional growth advantages as juveniles. However, the strength of growth advantages being maintained into the juvenile period varied among cohorts, sites and microhabitats. Specifically, a stronger growth advantage was found on some microhabitats (e.g. mixed stands of macroalgae) relative to others (e.g. monocultures of Carpophyllum maschalocarpum) for some cohorts and sites only. For other cohorts and sites, the degree of coupling between larval and juvenile growth rates was either indistinguishable between microhabitats or else not evident. Similarly, the intensity of growth‐based selective mortality varied among cohorts, sites and microhabitats: for the cohort and site where carry‐over effects differed between microhabitats, we also observed difference in the intensity to which fish with rapid larval growth rates were favoured. Overall, our results highlight how this spatial and temporal patchiness in extrinsic factors can interact with intrinsic variation of recruiting individuals to have a major influence on the resulting distribution of juveniles and their phenotypic traits.  相似文献   

7.
We examined growth rates of juvenile skipjack tuna using otolith daily increment analysis to clarify geographic differences in early-life stage growth in the western and central Pacific Ocean (WCPO). We used a liner regression model to analyze the relationship between standard length (SL) and age (in days). The slope of growth model was significant difference between regions. There were rapid increases in the otolith mean daily increment width of juveniles at 7 days after hatching (DAH) and 10 DAH in the Western Pacific Warm Pool (WARM) and North Pacific Tropical Gyre area (NPTG), respectively. These periods correspond to the timing at which larvae complete their digestive-system development and start the piscivory. We found significant difference in logarithmic back-calculated SL between WARM and NPTG at 3 DAH (p?<?0.01). Mean growth rates until 10 DAH, when the larvae metamorphose into juveniles, were positively correlated with sea surface temperature (r?=?0.52). These results indicate that geographic difference in the growth of juvenile skipjack tuna caught in the WCPO in boreal winter cause in the larval stage, and that these differences are related to sea surface temperature.  相似文献   

8.
L. Zhang    Y. J. Wang    M. H. Hu    Q. X. Fan    S. G. Chenung    P. K. S. Shin    H. Li    L. Cao 《Journal of fish biology》2009,75(6):1158-1172
The effects of delayed first feeding on growth and survival of spotted mandarin fish Siniperca scherzeri larvae were examined under controlled conditions. Morphometric characters [yolk‐sac volume, oil globule volume, head depth (HD), body depth (BD), eye diameter (ED), musculature height (MH), mouth diameter (MD) and total length (LT)], body mass (M), specific growth rate (SGR) and survival were evaluated under different first‐feeding time (2, 3, 4 and 5 days after hatching). Larvae began to feed exogenously at 2 days after hatching (DAH) and the point of no return (PNR) occurred between 5 and 6 DAH at 23° C, range ±1·0° C. The yolk volume of larvae first‐fed at 2 days had a significant difference compared with that of larvae first‐fed at 3, 4 and 5 days on 3 and 4 DAH. The larvae first‐fed at 2 days achieved comparatively better growth performance than that of 3, 4 and 5 days. On 5 DAH, all morphometric characters had significant differences between 2 and 5 days and 2 and 4 days initial feeding, respectively. Total mortality was recorded on 9 DAH for the larvae first‐fed at 5 days. On 12 DAH, significant differences were observed between 2 and 4 days and 3 and 4 days initial feeding for all morphometric characters. From 16 DAH to the end of experiment, all growth variables of the larvae first‐fed at 2 days were significantly higher than those in other treatments. The SGR (2–9 DAH) first‐fed at 2 and 3 days were significantly higher than 4 and 5 day treatments, and the SGR (9–16 DAH) first‐fed at 2 days was significantly higher than 3 and 4 day treatments. There was no significant difference, however, of SGR (16–28 DAH) among treatments. Survival rate was significantly higher at 2 days initial feeding (27·42%) when compared with 3 (15·96%) and 4 days (7·92%) initial feeding at the end of experiment. The present study suggests that the first feeding of S. scherzeri larvae should be initiated at 2 days after hatching for achieving good growth and survival.  相似文献   

9.
Captive breeding has been suggested as a method of conservation for many vertebrates, and is increasingly being proposed as a strategy for invertebrates. In this study, the growth, development and fertility of adults of the vulnerable cerambycid Morimus funereus reared in captivity are examined. Two oviposition cycles; from May to September and from January to March were studied and larvae from wild adults and from the progeny of captive adults (second generation larvae) were examined. Five to 12 instars were observed during larval development. Larval development was completed in 218 days (average) for the progeny of wild adults with an average mortality rate of 10.3% and in 226 days (average) for larvae from captive adults with mortality rate of 34.9%. First generation larval body weights were disparate during development, while second generation larvae had similar weights with no significant differences. In this study we have tested the potential of captive breaded M. funereus larvae as a model for investigation of digestive enzymes. Amylase from the midgut of larvae reared under laboratory conditions showed twofold higher specific activities with a decreased number of isoforms expressed, as compared to the enzyme from field-collected larvae. Captive breeding of M. funereus can be used in the future as a part of an effective conservation strategy for this rare insect species.  相似文献   

10.
Ecological aspects of recruitment in the amphidromous goby, Sicyopterus japonicus, were studied from larval collections made with a set net in the estuary of the Ota River, Wakayama, Japan. The abundance patterns of the 12,766 larvae collected from 18 April to 26 August 2006 showed several peaks during the recruitment season. Their body sizes at recruitment ranged from 23.5 to 30.0 mm standard length (mean ± SD, 26.3 ± 1.1 mm), 0.11 to 0.49 g body weight (0.22 ± 0.05 g), and 8 to 20 condition factor (11 ± 2). The standard length of the goby larvae tended to decrease with the season, while their body weight slightly increased and resulted in an increase in condition factor. The recruitment of larvae occurred mainly during the daytime. Otolith growth increment analysis of 30 larvae collected by a square lift net on 30 April 2005 revealed that the oceanic larval duration after downstream migration ranged from 173 to 253 days (208 ± 22) after hatching. A limited time of recruitment in early summer and a considerably long duration of oceanic life (about a half year) appeared to be unique characteristics of this Sicyopterus species that lives in a temperate region in comparison to other tropical species of the genus Sicyopterus that all have year-round recruitment.  相似文献   

11.
Commercial catches of the ‘major carps’ (grass carp Ctenopharyngodon idella, silver carp Hypophthalmichthys molitrix, black carp Mylopharyngodon piceus and bighead carp Aristichthys nobilis) in the middle and lower reaches of the Yangtze River have declined precipitously since construction of the Three Gorges Dam (TGD). To assess specific environmental effects, young-of-the-year major carps were collected below TGD in the Yangtze River at Jianli (larvae) and E’zhou (juveniles) and in the Dongting Lake (juveniles) during June–August 2007. Lapillar otoliths were analyzed to determine early growth. There were no discernible growth increments in otoliths for a majority of the larvae (38 of 63 grass carp and 40 of 47 silver carp), while increments were evident in otoliths formed in the larval stage for all the juveniles, indicating that larvae without discernible increments failed to recruit to the juvenile stage. Back-calculated hatch dates of major carps were between 31 May and 24 July. The initiation of the spawning season was delayed about 1 month compared to pre-TGD records. Larval growth rates, as reflected by otolith-increment width, were lower at Dongting Lake (closer to TGD) than at E’zhou (farther from TGD), indicating that TGD-moderated effects on early growth and development of carps are more apparent for fishes hatched nearer to the dam. The delay in spawning and decreased early growth may partly explain the recent decline of the major carp resources in the middle and lower Yangtze River.  相似文献   

12.
The G allele of the FOXO3 single nucleotide polymorphism (SNP) rs2802292 exhibits a consistently replicated genetic association with longevity in multiple populations worldwide. The aims of this study were to quantify the mortality risk for the longevity‐associated genotype and to discover the particular cause(s) of death associated with this allele in older Americans of diverse ancestry. It involved a 17‐year prospective cohort study of 3584 older American men of Japanese ancestry from the Honolulu Heart Program cohort, followed by a 17‐year prospective replication study of 1595 white and 1056 black elderly individuals from the Health Aging and Body Composition cohort. The relation between FOXO3 genotype and cause‐specific mortality was ascertained for major causes of death including coronary heart disease (CHD), cancer, and stroke. Age‐adjusted and multivariable Cox proportional hazards models were used to compute hazard ratios (HRs) for all‐cause and cause‐specific mortality. We found G allele carriers had a combined (Japanese, white, and black populations) risk reduction of 10% for total (all‐cause) mortality (HR = 0.90; 95% CI, 0.84–0.95; = 0.001). This effect size was consistent across populations and mostly contributed by 26% lower risk for CHD death (HR = 0.74; 95% CI, 0.64–0.86; P = 0.00004). No other causes of death made a significant contribution to the survival advantage for G allele carriers. In conclusion, at older age, there is a large risk reduction in mortality for G allele carriers, mostly due to lower CHD mortality. The findings support further research on FOXO3 and FoxO3 protein as potential targets for therapeutic intervention in aging‐related diseases, particularly cardiovascular disease.  相似文献   

13.
Morphological development, including the body proportions, fins, pigmentation and labyrinth organ, in laboratory-hatched larval and juvenile three-spot gourami Trichogaster trichopterus was described. In addition, some wild larval and juvenile specimens were observed for comparison. Body lengths of larvae and juveniles were 2.5 ± 0.1 mm just after hatching (day 0) and 9.2 ± 1.4 mm on day 22, reaching 20.4 ± 5.0 mm on day 40. Aggregate fin ray numbers attained their full complements in juveniles >11.9 mm BL. Preflexion larvae started feeding on day 3 following upper and lower jaw formation, the yolk being completely absorbed by day 11. Subsequently, oblong conical teeth appeared in postflexion larvae >6.4 mm BL (day 13). Melanophores on the body increased with growth, and a large spot started forming at the caudal margin of the body in flexion postlarvae >6.7 mm BL, followed by a second large spot positioned posteriorly on the midline in postflexion larvae >8.6 mm BL. The labyrinth organ differentiated in postflexion larvae >7.9 mm BL (day 19). For eye diameter and the first soft fin ray of pelvic fin length, the proportions in laboratory-reared specimens were smaller than those in wild specimens in 18.5–24.5 mm BL. The pigmentation pattern of laboratory-reared fish did not distinctively differ from that in the wild ones. Comparisons with larval and juvenile morphology of a congener T. pectoralis revealed several distinct differences, particularly in the numbers of myomeres, pigmentations and the proportional length of the first soft fin ray of the pelvic fin.  相似文献   

14.
Japanese Spanish mackerel, Scomberomorus niphonius, larvae feed almost exclusively on fish larvae from the first‐feeding stage. The relationship between the growth of S. niphonius larvae and concentration of major prey organisms of the larvae, clupeid larvae, was investigated in the Sea of Hiuchi, the central Seto Inland Sea, Japan, from 28 to 29 May 1997. Water temperature, salinity, and the concentration of clupeid larvae had no significant effect on the S. niphonius larval concentration. Mean growth rate of S. niphonius larvae varied between 0.38 and 0.64 mm day?1. The temperature and salinity had no significant effect on the mean larval growth rate while there existed prey concentration‐dependent growth at lower prey concentration. The relationship between the mean larval growth rate (Gm) and concentration of clupeid larvae (CC) was expressed by a logarithmic equation: Gm = 0.037 log CC + 0.441 (n = 16, r2 = 0.519, P < 0.01).  相似文献   

15.
Mortality of fish early life stages was measured in a pressure vessel to simulate vertical displacement within the water column. Mortality was measured for three pressure regimes for four fish species: larval bigmouth buffalo Ictiobus cyprinellus, larval blue catfish Ictalurus furcatus, juvenile bluegill Lepomis macrochirus, and juvenile largemouth bass Micropterus salmoides. The maximum pressure‐change tested, 344.8 kPa, equivalent to a 35.2 m displacement of fish within the water column, did not cause significant mortality of larvae or juveniles. Since 32.5 m exceeds depths in most inland navigation channels and possibly the depth to which rapid propeller induced water mixing occurs, the range of pressure changes that could be experienced by early life stages during towboat mixing of the water column will not result in significant mortality.  相似文献   

16.
The larval and juvenile stages of kitsune-mebaru,Sebastes vulpes, based on 50 wild specimens collected in, the Sea of Japan, are described and illustrated, and some ecological aspects of the early life history (feeding, horizonal distribution and habitat shift) included. Preflexion larvae became extruded between 3.9–4.6 mm body length (BL) and notochord flexion occurred between 4.7–7.1 mm BL. Transformation from postflexion larvae to pelagic juventiles occurred between 13–17 mm BL. Compared with other rockfish species,S. vulpes is deep-bodied, throughout both larval and, juvenile stages. Larval and juvenileS. vulpes inhabit mainly coastal water surface layer (usually on the continental shelf), but do not occur offshore region (northwest of Oki Islands). Although someS. vulpes juveniles are associated with drifting seaweed, such clumps are not indispensable habitats for any stages. Surface-to-benthie migration of juveniles occurs at about 25 mm BL. Preflexion and flexion larvae feed mainly on copepod nauplii, and postflexion, transforming larvae and pelagic juveniles mainly on calanoid copepodites (Parracalanus parvus).  相似文献   

17.
Morphological development, including that of fins, labyrinth organ, body proportions, and pigmentation, in laboratory-hatched larval and juvenile snakeskin gourami Trichogaster pectoralis is described. Body lengths (BL; mean ± SD) of larvae and juveniles were 2.3 ± 0.1 mm just after hatching (day 0) and 8.2 ± 0.6 mm on day 22, reaching 14.1 ± 2.3 mm on day 48. Aggregate fin ray numbers attained their full complements in juveniles >11.8 mm BL. Preflexion larvae started feeding on day 2 following upper and lower jaw formation, the yolk being completely absorbed by day 12. Subsequently, oblong conical teeth appeared in postflexion larvae >8.2 mm BL (day 16). Melanophores on the body increased with growth, with a large dark spot developing on the lateral midline at the caudal margin of the body in flexion larvae >6.1 mm BL. Subsequently, a broad vertical dark band from the eye to the caudal peduncle developed in postflexion larvae >8.9 mm BL. Proportions of head and pre-anal lengths became constant in postflexion larvae greater than ca. 9–10 mm BL, whereas those of maximum body depth, eye diameter, and snout length failed to stabilize in fish of the size examined in this study. First soft fin ray of the pelvic fin elongated, reaching over 40% BL. The labyrinth organ differentiated in postflexion larvae >7.4 mm BL (day 22). Comparisons of larval and juvenile morphology with another anabantoid species Anabas testudineus were also made, revealing several distinct differences, particularly in the numbers of myomeres and fin rays in the dorsal/anal fins, mouth location and body shape.  相似文献   

18.
Mass mortalities of larval cultures of Chilean scallop Argopecten purpuratus have repeatedly occurred in northern Chile, characterized by larval agglutination and accumulation in the bottom of rearing tanks. The exopolysaccharide slime (EPS) producing CAM2 strain was isolated as the primary organism from moribund larvae in a pathogenic outbreak occurring in a commercial hatchery producing larvae of the Chilean scallop Argopecten purpuratus located in Bahía Inglesa, Chile. The CAM2 strain was characterized biochemically and was identified by polymerase chain reaction amplification of 16S rRNA as Halomonas sp. (Accession number DQ885389.1). Healthy 7-day-old scallop larvae cultures were experimentally infected for a 48-h period with an overnight culture of the CAM2 strain at a final concentration of ca. 105 cells per milliliter, and the mortality and vital condition of larvae were determined by optical and scanning electron microscopy (SEM) to describe the chronology of the disease. Pathogenic action of the CAM2 strain was clearly evidenced by SEM analysis, showing a high ability to adhere and detach larvae velum cells by using its “slimy” EPS, producing agglutination, loss of motility, and a posterior sinking of scallop larvae. After 48 h, a dense bacterial slime on the shell surface was observed, producing high percentages of larval agglutination (63.28 ± 7.87%) and mortality (45.03 ± 4.32%) that were significantly (P < 0.05) higher than those of the unchallenged control cultures, which exhibited only 3.20 ± 1.40% dead larvae and no larval agglutination. Furthermore, the CAM2 strain exhibited a high ability to adhere to fiberglass pieces of tanks used for scallop larvae rearing (1.64 × 105 cells adhered per square millimeters at 24 h postinoculation), making it very difficult to eradicate it from the culture systems. This is the first report of a pathogenic activity on scallop larvae of Halomonas species, and it prompts the necessity of an appraisal on biofilm-producing bacteria in Chilean scallop hatcheries.  相似文献   

19.
An extensive body of work suggests that altered marine carbonate chemistry can negatively influence marine invertebrates, but few studies have examined how effects are moderated and persist in the natural environment. A particularly important question is whether impacts initiated in early life might be exacerbated or attenuated over time in the presence or absence of other stressors in the field. We reared Olympia oyster (Ostrea lurida) larvae in laboratory cultures under control and elevated seawater pCO2 concentrations, quantified settlement success and size at metamorphosis, then outplanted juveniles to Tomales Bay, California, in the mid intertidal zone where emersion and temperature stress were higher, and in the low intertidal zone where conditions were more benign. We tracked survival and growth of outplanted juveniles for 4 months, halfway to reproductive age. Survival to metamorphosis in the laboratory was strongly affected by larval exposure to elevated pCO2 conditions. Survival of juvenile outplants was reduced dramatically at mid shore compared to low shore levels regardless of the pCO2 level that oysters experienced as larvae. However, juveniles that were exposed to elevated pCO2 as larvae grew less than control individuals, representing a larval carry‐over effect. Although juveniles grew less at mid shore than low shore levels, there was no evidence of an interaction between the larval carry‐over effect and shore level, suggesting little modulation of acidification impacts by emersion or temperature stress. Importantly, the carry‐over effects of larval exposure to ocean acidification remained unabated 4 months later with no evidence of compensatory growth, even under benign conditions. This latter result points to the potential for extended consequences of brief exposures to altered seawater chemistry with potential consequences for population dynamics.  相似文献   

20.
The semiterrestrial crab Neohelice (=Chasmagnathus) granulata (Dana 1851) is a predominant species in brackish salt marshes, mangroves and estuaries. Its larvae are exported towards coastal marine waters. In order to estimate the limits of salinity tolerance constraining larval retention in estuarine habitats, we exposed in laboratory experiments freshly hatched zoeae to six different salinities (5–32‰). At 5‰, the larvae survived for a maximum of 2 weeks, reaching only exceptionally the second zoeal stage, while 38% survived to the megalopa stage at 10‰. Shortest development and negligible mortality occurred at all higher salt concentrations. These observations show that the larvae of N. granulata can tolerate a retention in the mesohaline reaches of estuaries, with a lower limit of ca. 10–15‰. Maximum survival at 25‰ suggests that polyhaline conditions rather than an export to oceanic waters are optimal for successful larval development of this species. In another experiment, we tested the capability of the last zoeal stage (IV) for reimmigration from coastal marine into brackish waters. Stepwise reductions of salinity during this stage allowed for moulting to the megalopa at 4–10‰. Although survival was at these conditions reduced and development delayed, these results suggest that already the zoea-IV stage is able to initiate the reimmigration into estuaries. After further salinity reduction, megalopae survived in this experiment for up to >3 weeks in freshwater, without moulting to juvenile crabs. In a similar experiment starting from the megalopa stage, successful metamorphosis occurred at 4–10‰, and juvenile growth continued in freshwater. Although these juvenile crabs showed significantly enhanced mortality and smaller carapace width compared to a seawater control, our results show that the late larval and early juvenile stages of N. granulata are well adapted for successful recruitment in brackish and even limnetic habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号