首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biosynthesis of six saponins (ginsenosides) in suspension culture of P. quinquefolium Z5 was investigated. Ginsenoside content in biomass reached the highest level, nearly 30 mg g−1 d.w., between 25 and 30 days of the culture. Saponins were synthesized simultaneously with cell growth but their synthesis rate was not proportional to the growth rate. During the phase of rapid biomass multiplication, after which biomass reached 90% of its maximum yield, only half examined ginsenosides was produced. The second half of the final saponins yield was produced during the slow growth phase, in which only 10% of biomass was grown. During the intensive growth phase the productivity of six saponins examined per biomass (dry weight) unit was 3.4 μg mg−1 d.w. day−1, however, this parameter calculated for slow growth phase reached nearly 30 μg mg−1 d.w. day−1. There were differences in increase of the contents of six saponins determined in biomass, and it was the highest for saponins Re (20(S)-protopanaxatriol-6-[O-α-l-rhamnopyranosyl(1 → 2)-β-d-glucopyranoside]-20-O-β-d-glucopyranoside) and Rg1 (20(S)-protopanaxatriol-6,20-di-O-β-d-glucoside).  相似文献   

2.
Preparative-scale fermentation of ginsenoside Rb1 (1) with Acremonium strictum AS 3.2058 gave three new compounds, 12β-hydroxydammar-3-one-20 (S)-O-β-d-glucopyranoside (7), 12β, 25-dihydroxydammar-(E)-20(22)-ene-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (8), and 12β, 20 (R), 25-trihydroxydammar-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (9), along with five known compounds, ginsenoside Rd (2), gypenoside XVII (3), ginsenoside Rg3 (4), ginsenoside F2 (5), and compound K (6). The structural elucidation of these metabolites was based primarily on one- and two-dimensional nuclear magnetic resonance and high-resolution electron spray ionization mass spectra analyses. Among these compounds, 26 are also the metabolites of ginsenoside Rb1 in mammals. This result demonstrated that microbial culture parallels mammalian metabolism; therefore, A. strictum might be a useful tool for generating mammalian metabolites of related analogs of ginsenosides for complete structural identification and for further use in pharmaceutical research in this series of compounds. In addition, the biotransformation kinetics was also investigated.  相似文献   

3.
A somatic embryogenesis protocol for plant regeneration of northern red oak (Quercus rubra) was established from immature cotyledon explants. Embryogenic callus cultures were induced on Murashige and Skoog medium (MS) containing 3% sucrose, 0.24% Phytagel™, and various concentrations of 2,4-dichlorophenoxyacetic acid (2,4-d) after 4 weeks of culture in darkness. A higher response (66%) of embryogenic callus was induced on 0.45 μM 2,4-d. Higher numbers of globular- (31), heart- (17), torpedo- (12), and cotyledon-stage (8) embryos per explant were obtained by culturing embryogenic callus on MS with 3% sucrose, 0.24% Phytagel™, and devoid of growth regulators after 8 weeks culture in darkness. Continuous sub-culturing of embryogenic callus on medium containing 2,4-d yielded only compact callus. Desiccation of embryos for 3 days in darkness at 25 ± 2°C followed by cold storage at 4°C in darkness for 8 weeks favored embryo germination and development of plantlets. Cotyledon-stage embryos subjected to desiccation and chilling treatment cultured on MS with 3% sucrose, 0.24 Phytagel™, 0.44 μM 6-benzylaminopurine (BA), and 0.29 μM gibberellic acid germinated at a higher frequency (61%) than with 0.44 μM BA alone and control cultures. Germinated plantlets developed a shoot and root, were acclimatized successfully, and maintained in a growth room for plantlet development.  相似文献   

4.
Bioconversion of quercetin glucosides using four generally recognized as safe (GRAS) organisms (Aspergillus oryzae, Bacillus subtilis, Lactobacillus plantarum, and Saccharomyces cerevisiae) was evaluated by measuring changes in the levels of quercetin compounds of onion. Of the four organisms, S. cerevisiae increased the content of quercetin-3-O-β-d-glucoside (III; isoquercitrin) and quercetin (IV), whereas decreasing quercetin-3,4′-O-β-d-glucoside (I) and quercetin-4′-O-β-d-glucoside (II). Also, S. cerevisiae converted authentic compound I to III, and II to IV, respectively. These results suggest that S. cerevisiae can be used to increase the levels of isoquercitrin (III), the most bioavailable quercetin compound in onion.  相似文献   

5.
Plant tissue cultures represent a potential source for producing secondary metabolites. In this work, Buddleja cordata tissue cultures were established in order to produce phenylpropanoids (verbascoside, linarin and hydroxycinnamic acids), as these metabolites are credited with therapeutic properties. Highest callus induction (76.4–84.3%) was obtained in five treatments containing 2,4-Dichlorophenoxyacetic acid (2,4-d: 0.45–9.05 μM) with Kinetin (KIN: 2.32, 4.65 μM), whereas highest root induction (79.6%) corresponded to the α-Naphthaleneacetic acid (9.05 μM) with KIN (2.32 μM) treatment. Verbascoside was the major phenylpropanoid produced in in vitro cultures (root, white and green callus) [66.24–86.26 mg g−1 dry weight (DW)], while linarin and hydroxycinnamic acid production was low (0.95–3.01 mg g−1 DW). Verbascoside and linarin production were improved in cell suspension culture (116 mg g−1 DW and 8.12 mg g−1 DW, respectively).  相似文献   

6.
We isolated and characterized a d-lactic acid-producing lactic acid bacterium (d-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 T and L. delbrueckii subsp. lactis JCM 1248 T, which are also known as d-LAB, the QU 41 strain exhibited a high thermotolerance and produced d-lactic acid at temperatures of 50 °C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on d-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l d-lactic acid was acquired with high optical purity (>99.9% of d-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 °C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve d-lactic acid productivity. At a dilution rate of 0.87 h−1, the high cell density continuous culture exhibited the highest d-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date.  相似文献   

7.
The use of lactic acid bacteria in fermentation of milk results in favorable physical and rheological properties due to in situ exopolysaccharide (EPS) production. The EPS from S. thermophilus ST1 produces highly viscous aqueous solutions and its structure has been investigated by NMR spectroscopy. Notably, all aspects of the elucidation of its primary structure including component analysis and absolute configuration of the constituent monosaccharides were carried out by NMR spectroscopy. An array of techniques was utilized including, inter alia, PANSY and NOESY-HSQC TILT experiments. The EPS is composed of hexasaccharide repeating units with the following structure: → 3)[α-d-Glcp-(1 → 4)]-β-d-Galp-(1 → 4)-β-d-Glcp-(1 → 4)[β-d-Galf-(1 → 6)]-β-d-Glcp-(1 → 6)-β-d-Glcp-(1 →, in which the residues in square brackets are terminal groups substituting backbone sugar residues that consequently are branch-points in the repeating unit of the polymer. Thus, the EPS consists of a backbone of four sugar residues with two terminal sugar residues making up two side-chains of the repeating unit. The molecular mass of the polymer was determined using translational diffusion experiments which resulted in Mw = 62 kDa, corresponding to 64 repeating units in the EPS.  相似文献   

8.
The genes encoding the catalytic domains (CD) of the three endoglucanases (EG I; Cel7B, EG II; Cel5A, and EG III; Cel12A) from Trichoderma reesei QM9414 were expressed in Escherichia coli strains Rosetta-gami B (DE3) pLacI or Origami B (DE3) pLacI and were found to produce functional intracellular proteins. Protein production by the three endoglucanase transformants was evaluated as a function of growth temperature. Maximal productivity of EG I-CD at 15°C, EG II-CD at 20°C and EG III at 37°C resulted in yields of 6.9, 72, and 50 mg/l, respectively. The endoglucanases were purified using a simple purification method based on removing E. coli proteins by isoelectric point precipitation. Specific activity toward carboxymethyl cellulose was found to be 65, 49, and 15 U/mg for EG I-CD, EG II-CD, and EG III, respectively. EG II-CD was able to cleave 1,3–1,4-β-d-glucan and soluble cellulose derivatives. EG III was found to be active against cellulose, 1,3–1,4-β-d-glucan and xyloglucan, while EG I-CD was active against cellulose, 1,3–1,4-β-d-glucan, xyloglucan, xylan, and mannan.  相似文献   

9.
Trehalose (1-α-d-glucopyranosyl-1-α-d-glucopyranoside), a non-reducing disaccharide is a major compatible solute, which maintains fluidity of membranes and protects the biological structure of organisms under stress. In this study, trehalose-6-phosphate synthase (otsA) and trehalose-6-phosphate phosphatase (otsB) genes encoding for trehalose biosynthesis from Escherichia coli was cloned as an operon and expressed in E. coli M15(pREP4). The recombinant E. coli strain showed a threefold increase in the activity of otsBA pathway enzymes, compared to the control strain. The transgenic E. coli accumulated up to 0.86 mg/l of trehalose. The sequence of otsA and otsB genes reported in this study contains several base substitutions with that of reported sequences in GenBank, resulting in the altered amino acid sequences of the translated proteins.  相似文献   

10.
A non-characterized gene, previously proposed as the d-tagatose-3-epimerase gene from Rhodobacter sphaeroides, was cloned and expressed in Escherichia coli. Its molecular mass was estimated to be 64 kDa with two identical subunits. The enzyme specificity was highest with d-fructose and decreased for other substrates in the order: d-tagatose, d-psicose, d-ribulose, d-xylulose and d-sorbose. Its activity was maximal at pH 9 and 40°C while being enhanced by Mn2+. At pH 9 and 40°C, 118 g d-psicose l−1 was produced from 700 g d-fructose l−1 after 3 h. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
This work examined the accumulation of artemisinin and related secondary metabolism pathways in hairy root cultures of Artemisia annua L. induced by a fungal-derived cerebroside (2S,2′R,3R,3′E,4E,8E)-1-O-β-d-glucopyranosyl-2-N-(2′-hydroxy-3′-octadecenoyl)-3-hydroxy-9-methyl-4,8-sphingadienine. The presence of the cerebroside induced nitric oxide (NO) burst and artemisinin biosynthesis in the hairy roots. The endogenous NO generation was examined to be involved in the cerebroside-induced biosynthesis of artemisinin by using NO inhibitors, N ω-nitro-l-arginine methyl ester and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The gene expression and activity of 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-d-xylulose 5-phosphate synthase were stimulated by the cerebroside, but more strongly by the potentiation of NO. While the mevalonate pathway inhibitor, mevinolin, only partially inhibited the induced artemisinin accumulation, the plastidic 2-C-methyl-d-erythritol 4-phosphate pathway inhibitor, fosmidomycin, nearly arrested artemisinin accumulation induced by cerebroside and the combination elicitation with an NO donor, sodium nitroprusside (SNP). With the potentiation by SNP at 10 μM, the cerebroside elicitor stimulated artemisinin production in 20-day-old hairy root cultures up to 22.4 mg/l, a 2.3-fold increase over the control. These results suggest that cerebroside plays as a novel elicitor and the involvement of NO in the signaling pathway of the elicitor activity for artemisinin biosynthesis.  相似文献   

12.
A strictly anaerobic mesophilic chitinolytic bacterial strain identified as Clostridium paraputrificum J4 was isolated from human feces. In response to various types of growth substrates, the bacterium produced an array of chitinolytic enzymes representing significant components of the J4 strain secretome. The excreted active proteins were characterized by estimating the enzymatic activities of endochitinase, exochitinase, and N-acetylglucosaminidase induced by cultivation in medium M-10 with colloidal chitin. The enzyme activities produced by J4 strain cultivated in medium M-10 with glucose were significantly lower. The spectrum of extracellularly excreted proteins was separated by SDS-PAGE. The chitinase variability was confirmed on zymograms of renatured SDS-PAGE. The enzymes were visualized under ultraviolet light by using 4-methylumbelliferyl derivatives of N-acetyl-β-d-glucosaminide, N,N′-diacetyl-β-d-chitobiose, or N,N′,N˝-triacetyl-β-d-chitotriose for β-N-acetylglucosaminidase, chitobiosidase, or endochitinase activities, respectively. Protein components of the secretome were separated by 2D-PAGE analysis. The distinct protein bands were excised, isolated, and subsequently characterized by using MALDI-TOF/TOF tandem mass spectrometry. The final identification was performed according to sequence homology by database searching.  相似文献   

13.
An N-acetylglucosaminidase produced by Streptomyces cerradoensis was partially purified giving, by SDS-PAGE analysis, two main protein bands with Mr of 58.9 and 56.4 kDa. The Km and Vmax values for the enzyme using p-nitrophenyl-β-N-acetylglucosaminide as substrate were of 0.13 mM and 1.95 U mg−1 protein, respectively. The enzyme was optimally activity at pH 5.5 and at 50 °C when assayed over 10 min. Enzyme activity was strongly inhibited by Cu2+ and Hg2+ at 10 mM, and was specific to substrates containing acetamide groups such as p-nitrophenyl-β-N-acetylglucosaminide and p-nitrophenyl-β-D-N,N′-diacetylchitobiose.  相似文献   

14.
Efficient Agrobacterium tumefaciens-mediated transformation was achieved using embryogenic suspension cultures of sweetpotato (Ipomoea batatas (L.) Lam.) cv. Lizixiang. Cell aggregates from embryogenic suspension cultures were cocultivated with the A. tumefaciens strain EHA105 harboring a binary vector pCAMBIA1301 with gusA and hygromycin phosphotransferase II gene (hpt II) genes. Selection culture was conducted using 25 mg l−1 hygromycin. A total of 2,218 plants were regenerated from the inoculated 1,776 cell aggregates via somatic embryogenesis. β-glucuronidase (GUS) assay and PCR, dot blot and Southern blot analyses of the regenerated plants randomly sampled showed that 90.37% of the regenerated plants were transgenic plants. The number of integrated T-DNA copies varied from 1 to 4. Transgenic plants, when transferred to soil in a greenhouse and a field, showed 100% survival. No morphological variations were observed in the ex vitro transgenic plants. These results exceed all transformation experiments reported so far in the literature in quantity of independent events per transformation experiment in sweetpotato.  相似文献   

15.
16.
When Pseudomonas mendocina NK-01 was cultivated in a 200-L fermentor using glucose as carbon source, 0.316 g L−1 medium-chain-length polyhydroxyalkanoate (PHAMCL) and 0.57 g L−1 alginate oligosaccharides (AO) were obtained at the end of the process. GC/MS was used to characterize the PHAMCL, which was found to be a polymer mainly consisting of 3HO (3-hydroxyoctanoate) and 3HD (3-hydroxydecanoate). T m and T g values for the PHAMCL were 51.03°C and −41.21°C, respectively, by DSC. Its decomposition temperature was about 300°C. The elongation at break was 700% under 12 MPa stress. MS and GPC were also carried out to characterize the AO which had weight-average molecular weights of 1,546 and 1,029 Da, respectively, for the two main components at the end of the fermentation process. MS analysis revealed that the AO were consisted of β-d-mannuronic acid and/or α-l-guluronic acid, and the β-d-mannuronic acid and/or α-l-guluronic acid residues were partially acetylated at position C2 or C3.  相似文献   

17.
Cell aggregation in the marine sponge Microciona prolifera is mediated by a multimillion molecular-mass aggregation factor, termed MAF. Earlier investigations revealed that the cell aggregation activity of MAF depends on two functional domains: (i) a Ca2+-independent cell-binding domain and (ii) a Ca2+-dependent proteoglycan self-interaction domain. Structural analysis of involved carbohydrate fragments of the proteoglycan in the self-association established a sulfated disaccharide β-d-GlcpNAc3S-(1→3)-α-l-Fucp and a pyruvated trisaccharide β-d-Galp4,6(R)Pyr-(1→4)-β-d-GlcpNAc-(1→3)-α-l-Fucp. Recent UV, SPR, and TEM studies, using BSA conjugates and gold nanoparticles of the synthetic sulfated disaccharide, clearly demonstrated self-recognition on the disaccharide level in the presence of Ca2+-ions. To determine binding forces of the carbohydrate–carbohydrate interactions for both synthetic MAF oligosaccharides, atomic force microscopy (AFM) studies were carried out. It turned out that, in the presence of Ca2+-ions, the force required to separate the tip and sample coated with a self-assembling monolayer of thiol-spacer-containing β-d-GlcpNAc-(1→3)-α-l-Fucp-(1→O)(CH2)3S(CH2)6S- was found to be quantized in integer multiples of 30 ± 6 pN. No binding was observed between the two monolayers in the absence of Ca2+-ions. Cd2+-ions could partially induce the self-interaction. In contrast, similar AFM experiments with thiol-spacer-containing β-d-Galp4,6(R)Pyr-(1→4)-β-d-GlcpNAc-(1→3)-α-l-Fucp-(1→O)(CH2)3S(CH2)6S- did not show a binding in the presence of Ca2+-ions. Also TEM experiments of gold nanoparticles coated with the pyruvated trisaccharide could not make visible aggregation in the presence of Ca2+-ions. It is suggested that the self-interaction between the sulfated disaccharide fragments is stronger than that between the pyruvated trisaccharide.  相似文献   

18.
Xylem parenchyma cells (XPCs) in trees adapt to subzero temperatures by deep supercooling. Our previous study indicated the possibility of the presence of diverse kinds of supercooling-facilitating (SCF; anti-ice nucleation) substances in XPCs of katsura tree (Cercidiphyllum japonicum), all of which might have an important role in deep supercooling of XPCs. In the previous study, a few kinds of SCF flavonol glycosides were identified. Thus, in the present study, we tried to identify other kinds of SCF substances in XPCs of katsura tree. SCF substances were purified from xylem extracts by silica gel column chromatography and Sephadex LH-20 column chromatography. Then, four SCF substances isolated were identified by UV, mass and nuclear magnetic resonance analyses. The results showed that the four kinds of hydrolyzable gallotannins, 2,2′,5-tri-O-galloyl-α,β-d-hamamelose (trigalloyl Ham or kurigalin), 1,2,6-tri-O-galloyl-β-d-glucopyranoside (trigalloyl Glc), 1,2,3,6-tetra-O-galloyl-β-d-glucopyranoside (tetragalloyl Glc) and 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranoside (pentagalloyl Glc), in XPCs exhibited supercooling capabilities in the range of 1.5–4.5°C, at a concentration of 1 mg mL−1. These SCF substances, including flavonol glycosides and hydrolyzable gallotannins, may contribute to the supercooling in XPCs of katsura tree.  相似文献   

19.
In this study, the effects of citrate addition on d-ribose production were investigated in batch culture of a transketolase-deficient strain, Bacillus subtilis EC2, in shake flasks and bioreactors. Batch cultures in shake flasks and a 5-l reactor indicated that supplementation with 0.2–0.5 g l−1 of citrate enhanced d-ribose production. When B. subtilis EC2 was cultivated in a 15-l reactor in a complex medium, the d-ribose concentration was 70.9 g l−1 with a ribose yield of 0.497 mol mol−1. When this strain was grown in the same medium supplemented with 0.3 g l−1 of citrate, 83.4 g l−1 of d-ribose were obtained, and the ribose yield was increased to 0.587 mol mol−1. Addition of citrate reduced the activities of pyruvate kinase and phosphofructokinase, while it increased those of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Metabolic flux distribution in the stationary phase indicated that citrate addition resulted in increased fluxes in the pentose phosphate pathway and TCA cycle, and decreased fluxes in the glycolysis and acetate pathways.  相似文献   

20.
Vegetative mycelia of Pleurotus ostreatus were differentiated into primordia and subsequently into fruit bodies in synthetic sucrose-asparagine medium when exposed to light at low temperature. During photo-morphogenesis, l-ascorbic acid-like substances called reductones were produced. l-Ascorbic acid, d-eryth-roascorbic acid, 5-O-(α-d-glucopyranosyl)-d-erythroascorbic acid, 5-O-(α-d-xylopyranosyl)-d-erythroascorbic acid, 5-methyl-5-O-(α-d-glucopyranosyl)-d-erythroascorbic acid and 5-methyl-5-O-(α-d-xylopyranosyl)-d-eryth-roascorbic acid were accumulated initially in the illuminated mycelia before the initiation of fruiting. The content of glycosides of erythroascorbic acid and their methylated compounds increased again in the primordia and the fruit bodies. Exogenous L-ascorbic acid induced the formation of primordia from the mycelia in the dark in a dose-dependent manner. Thus, this suggests that these reductones might play a role in mediating the light stimulus in photomorphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号