首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid fermentation of cane molasses into ethanol has been studied in batch, continuous (free-cell and cell-immobilized systems) by a strain of Saccharomyces cerevisiae at temperature 30 degrees C and pH 5.0. The maximum productivity of ethanol obtained in immobilized system was 28.6 g L(-1) h(-1). The cells were immobilized by natural mode on a carrier of natural origin and retention of 0.132 g cells/g carrier was achieved. The immobilized-cell column was operated continuously at steady state over a period of 35 days. Based on the parameter data monitored from the system, mathematical analysis has been made and rate equations proposed, and the values of specific productivity of ethanol and specific growth rate for immobilized cells computed. It has been established that immobilized cells exhibit higher specific rate of ethanol formation compared to free cells but the specific growth rate appears to be comparatively low. The yield of ethanol in the immobilized-cell system is also higher than in the free-cell system.  相似文献   

2.
The cells of Saccharomyces cerevisiae ATCC 24553, were immobilized in k-carrageenan and packed in a tapered glass column reactor for ethanol production from pineapple cannery waste at temperature 30 degrees C and pH 4.5. The maximum productivity was 42.8 g ethanol 1(-1) h(-1) at a dilution rate of 1.5 h(-1). The volumetric ethanol productivity of the immobilized cells was ca. 11.5 times higher than the free cells. The immobilized cell reactor was operated over a period of 87 days at a dilution rate of 1.0 h(-1), without any loss in the immobilized cell activity. The maximum specific ethanol productivity and specific sugar uptake rate of the immobilized cells were 1.2 g ethanol g(-1) dry wt. cell h(-1) and 2.6 g sugar g(-1) dry wt. cell h(-1), respectively, at a dilution rate of 1.5 h(-1).  相似文献   

3.
Saccharomyces cerevisiae and Acetobacter aceti cells were immobilized by entrapment in Ca-alginate or by adsorption on to preformed cellulose beads and were treated with 0-20% (v/v) ethanol and 0-10% (v/v) acetic acid. At 20% (v/v) ethanol, lethal for free yeast cells, 62-72% of the immobilized cells survived. In 10% (v/v) acetic acid, free and adsorbed Acetobacter aceti cells ceased to grow but 69% of entrapped cells survived. Cells released from the carrier showed an intermediate survival (20-60%).  相似文献   

4.
介绍了一种新型多组份生物微胶囊体系-SA/CS-CaCl2/PMCG微胶囊。考察了PMCG和SA/CS-CaCl2/PMCG微胶囊体系对大肠杆菌和酿酒酵母生长的影响,并用SA/CS-CaCl2/PMCG微胶囊进行了固定化培养大肠杆菌和酿酒酵母的研究。结果表明,与其它合成聚阳离子类似,PMCG组分对细胞生长有明显的抑制作用,但是在制胶囊过程中以及在用SA/CS-CaCl2/PMCG微胶囊对大肠杆菌和酿酒酵母培养过程中,都显示了良好的生物相容性,因此作为整个体系来说,该微胶囊可用于微生物细胞的固定化培养。  相似文献   

5.
There is a growing interest to find alternate bioresources for production of ethanol, apart from cane/sugar beet molasses and starchy crops like sweet sorghum, cassava and sweet potato. Mahula (Madhuca latifolia L.) is a forest tree abundantly available in the Indian subcontinent and its flowers are very rich in fermentable sugars (28.1-36.3 g 100 g(-1)). Batch fermentation of fresh and 12-month-stored flowers with free (whole cells) and immobilized cells of Saccharomyces cerevisiae (strain CTCRI) was carried out in 2-l Erlenmeyer flasks. The ethanol yields were 193 and 148 g kg(-1) (using free cells) and 205 and 152 g kg(-1) (using immobilized cells) from fresh and 12-month-stored mahula flowers, respectively.  相似文献   

6.
7.
Screening tests carried out for 10 strains of Candida stellata confirmed high levels of glycerol production, although a low fermentation rate and reduced ethanol content were observed. To overcome the poor competition with Saccharomyces cerevisiae, fermentation tests with immobilized C. stellata cells, alone or in combination with S. cerevisiae, have been carried out. The immobilization of C. stellata cells consistently reduced the fermentation length when compared with that obtained with free cells, immobilized cells exhibiting about a 30-and a 2-fold improvement in fermentation rate compared with rates for C. stellata and S. cerevisiae free cells, respectively. Moreover, immobilized C. stellata cells produced a twofold increase in ethanol content and a strong reduction in acetaldehyde and acetoin production in comparison with levels for free cells. The evaluation of different combinations of C. stellata immobilized cells and S. cerevisiae showed interesting results with regard to analytical profiles for practical application in wine making. In fact, analytical profiles of combinations showed, apart from a high glycerol content, a reduction in the amounts of acetic acid and higher alcohols and a consistent increase in succinic acid content in comparison with values for the S. cerevisiae control strain. Sequential fermentation first with immobilized C. stellata cells and then after 3 days with an added inoculum of S. cerevisiae free cells was the best combination, producing 15.10 g of glycerol per liter, i.e., 136% more than the S. cerevisiae control strain produced. Fermentation with immobilized C. stellata cells could be an interesting process by which to enhance glycerol content in wine.  相似文献   

8.
The production of ethanol from carob pod extract by free and immobilized Saccharomyces cerevisiae cells in batch and fed-batch culture was investigated. Fed-batch culture proved to be a better fermentation system for the production of ethanol than batch culture. In fed-batch culture, both free and immobilized S. cerevisiae cells gave the same maximum concentration (62 g/L) of final ethanol at an initial sugar concentration of 300 g/L and F = 167 mL/h. The maximum ethanol productivity (4.4 g/L h) was obtained with both free and immobilized cells at a substrate concentration of 300 g/L and F = 334 mL/h. In repeated fed-batch culture, immobilized S. cerevisiae cells gave a higher overall ethanol concentration compared with the free cells. The immobilized S. cerevisiae cells in Ca-alginate beads retained their ability to produce ethanol for 10 days. (c) 1994 John Wiley & Sons, Inc.  相似文献   

9.
The yeast Saccharomyces cerevisiae was grown on 10% glucose medium and subsequently transferred to fresh medium containing 2- and 3-carbon substrates. Under these conditions, the yeast rapidly acquired an oxidative capacity, as evidenced by oxygen uptake rates and 14CO2 evolution rates during respiration on ethanol or (14C)acetate. The assimilative capacity for 2-carbon substrates developed more slowly and followed the induction of isocitrate lyase. Washed yeast transferred to the basic medium containing no added carbon substrate possessed only low levels of isocitrate lyase after a 6-h adaptation. After 6 h, isocitrate lyase was present at high levels in cells transferred to a range of ethanol concentrations but was present in only low amounts in cells transferred to acetate. The role of ethanol as an inducer of isocitrate lyase is discussed.  相似文献   

10.
As a means of integrating cell growth and immobilization, recombinant Saccharomyces cerevisiae cells with invertase activity were immobilized in liquid-core alginate capsules and cultured to a high density. S. cerevisiae cells of SEY 2102 (MAT alpha ura3-52 leu2-3, 112 his4-519) harboring plasmid pRB58 with the SUC2 gene coding for invertase were grown to 83 g/L of liquid-core volume inside the capsule on a dry weight basis. The cloned invertase was expressed well in the immobilized cells with slightly higher activity than the free cells in a batch culture. Invertase in the immobilized cells showed slightly more improved thermal stability than in the free cells. Storage in a Na-acetate buffer at 4 degrees C and 10 degrees C for 1 month resulted in 7% and 8% loss in activity, respectively. The sucrose hydrolysis reaction was stably maintained for 25 repeated batches for 7 days at 30 degrees C. Continuous hydrolysis of 0.3 M sucrose was carried out in a packed bed reactor with a conversion of more than 90% at a maximum productivity of 55.5 g glucose/L per hour for 7 days. In a continuous stirred tank reactor, the maximum productivity of 80.8 g glucose/L per hour was achieved at a conversion of 59.1% using 1.0 M sucrose solution, and 0.5 M sucrose solution was hydrolyzed for 1 week with a 95% conversion at a productivity of 48.8 g/L per hour. (c) 1996 John Wiley & Sons, Inc.  相似文献   

11.
Hydroxyurea, an inhibitor of DNA synthesis in Saccharomyces cerevisiae, has been applied in order to restrict growth of immobilized cells. For comparison, the influence of hydroxyurea on suspended S. cerevisiae has also been investigated. Recovery from DNA synthesis inhibition, indicated by measurements of cell growth rate, DNA content, and light scatter properties, occurred faster in immobilized cells than in the suspended yeast. Morphogenesis in both populations was arrested by hydroxyurea, and there was an accumulation of single immobilized and suspended cells with large buds. Synthesis of protein and RNA was not adversely affected in either cell type. The specific rate of ethanol production by immobilized cells increased by an average of 24%, while, for the suspended cells, specific ethanol productivity was up to three times higher. Glucose consumption rates for both cell types also increased under the influence of hydroxyurea. Immobilized cell ethanol yields were reduced by ca. 16% in the presence of hydroxyurea; suspended cell yields were lower by an average of 50%. Total polysaccharide content was reduced by 65% for suspended cells and increased 30% for immobilized cells after hydroxyurea treatment. The data evidence disturbance of the yeast cell cycle due to immobilization.  相似文献   

12.
The in vivo kinetics in Saccharomyces cerevisiae CEN.PK 113-7D was evaluated during a 300-second transient period after applying a glucose pulse to an aerobic, carbon-limited chemostat culture. We quantified the responses of extracellular metabolites, intracellular intermediates in primary metabolism, intracellular free amino acids, and in vivo rates of O(2) uptake and CO(2) evolution. With these measurements, dynamic carbon, electron, and ATP balances were set up to identify major carbon, electron, and energy sinks during the postpulse period. There were three distinct metabolic phases during this time. In phase I (0 to 50 seconds after the pulse), the carbon/electron balances closed up to 85%. The accumulation of glycolytic and storage compounds accounted for 60% of the consumed glucose, caused an energy depletion, and may have led to a temporary decrease in the anabolic flux. In phase II (50 to 150 seconds), the fermentative metabolism gradually became the most important carbon/electron sink. In phase III (150 to 300 seconds), 29% of the carbon uptake was not identified in the measurements, and the ATP balance had a large surplus. These results indicate an increase in the anabolic flux, which is consistent with macroscopic balances of extracellular fluxes and the observed increase in CO(2) evolution associated with nonfermentative metabolism. The identified metabolic processes involving major carbon, electron, and energy sinks must be taken into account in in vivo kinetic models based on short-term dynamic metabolome responses.  相似文献   

13.
Membranes were isolated by French pressure cell extrusion of lysozyme-preincubated cells of the cyanobacterium Synechocystis 6714 after growth in the presence of 0.4 M NaCl for 4 days. These cells showed up to 6-fold respiratory activity (oxygen uptake) when compared to control cells. Separation of plasma and thylakoid membranes revealed that the major part of cytochrome c oxidase was associated with the latter. Immunoblotting of sodium dodecylsulfate polyacrylamide gel electrophorized membranes with antisera raised against subunit I, subunit II, and the holoenzyme of the aa3-type cytochrome oxidase from Paracoccus denitrificans gave specific and complementary cross-reactions at apparent molecular weights of about 25 and 17-18 kDa, respectively. Crude membranes were solubilized also with n-octyl glucoside, and the cytochrome oxidase was separated from the extract by affinity chromatography using immobilized cytochrome c from Saccharomyces cerevisiae. The enzyme was eluted with KCl/octyl glucoside. Dialysed and concentrated enzyme solution, which was free of b- and c-type cytochromes, gave reduced alpha- and gamma-peaks around 603 and 443 nm, respectively. Upon treatment of the sample with carbon monoxide the peaks were found at 593 and 433 nm, respectively. Photodissociation spectra of the CO-complexed enzyme were in full agreement with cytochrome aa3 being a functional cytochrome oxidase in Synechocystis 6714.  相似文献   

14.
Saccharomyces cerevisiae histidine auxotrophs are unable to use L-histidinol as a source of histidine even when they have a functional histidinol dehydrogenase. Mutations in the hol1 gene permit growth of His- cells on histidinol by enhancing the ability of cells to take up histidinol from the medium. Second-site mutations linked to HOL1-1 further increase histidinol uptake. HOL1 double mutants and, to a lesser extent, HOL1-1 single mutants show hypersensitivity to specific cations added to the growth medium, including Na+, Li+, Cs+, Be2+, guanidinium ion, and histidinol, but not K+, Rb+, Ca2+, or Mg2+. The Na(+)-hypersensitive phenotype is correlated with increased uptake and accumulation of this ion. The HOL1-1-101 gene was cloned and used to generate a viable haploid strain containing a hol1 deletion mutation (hol1 delta). The uptake of cations, the dominance of the mutant alleles, and the relative inability of hol1 delta cells to take up histidinol or Na+ suggest that hol1 encodes an ion transporter. The novel pattern of ion transport conferred by HOL1-1 and HOL1-1-101 mutants may be explained by reduced selectivity for the permeant ions.  相似文献   

15.
The photosynthetic oxygen evolution of Chlorella vulgaris (Beijer.) cells taken from phosphate-deficient (-P) and control cultures was measured during 8 days of culture growth. Under inorganic carbon concentration (50 microM) in the measuring cell suspension and irradiance (150 micromol m(-2) s(-1)), the same as during culture growth, there were no marked differences in the photosynthetic O2 evolution rate between the -P cells and the controls. The much slower growth of -P cultures indicated that the utilization of absorbed photosynthetically active radiation (PAR) in the CO2 assimilation and biomass production were in -P cells less efficient than in the controls. Alga cells under the phosphorus stress utilized more of the absorbed PAR in the nitrate reduction than the control cells. However, under conditions of more efficient CO2 supply (inorganic carbon concentration 150 microM, introducing of exogenous carbonic anhydrase to the measuring cell suspension) and under increased irradiance (500 micromol m(-2) s(-1)), the photosynthetic O2 evolution in -P cells reached a higher rate than in the controls. The results suggest that in -P cells the restricted CO2 availability limits the total photosynthetic process. But under conditions more favorable for the CO2 uptake and under high irradiance, the -P cells may reveal a higher photosynthetic oxygen evolution rate than the controls. It is concluded that an increased potential activity of the photosynthetic light energy absorption and conversion in the C. vulgaris cells from -P cultures is a sign of acclimation to phosphorus stress by a sun-type like adaptation response of the photosynthetic apparatus.  相似文献   

16.
Comparison of glucose uptake kinetics in different yeasts.   总被引:5,自引:1,他引:4       下载免费PDF全文
The kinetics of glucose uptake were investigated in laboratory wild-type strains of Saccharomyces cerevisiae of differing genetic backgrounds, in other species of Saccharomyces, and in other yeasts, both fermentative and respiratory. All yeasts examined displayed more than one uptake system for glucose. Variations in apparent Km values, velocity of uptake, and effects of glucose concentration on carrier activity were observed. The three type strains for the species S. cerevisiae, Saccharomyces bayanus, and Saccharomyces carlsbergensis gave distinctive patterns, and each of the laboratory strains was similar to one or another of the type strains. Other fermentative yeasts (Pichia guillermondi and Pichia strasburgensis) regulated glucose uptake in a manner similar to that of Saccharomyces spp. Such was not true for the respiratory yeasts investigated, Pichia heedi and Yarrowia lipolytica, which did not demonstrate glucose repression of carrier activity; this finding suggests that this mechanism of control of transporter activity may be associated with fermentative ability.  相似文献   

17.
The effect of temperature and pH on the kinetics of ethanol production by free and calcium alginate immobilized cells of Kluyveromyces marxianus grown on Jerusalem artichoke extract was investigated. With the free cells, the ethanol and biomass yields were relatively constant over the temperature range 25-35 degrees C, but dropped sharply beyond 35 degrees C. Other kinetic parameters, specific growth rate, specific ethanol production rate, and specific total sugar uptake rate were maximum at 35 degrees C. However, with the immobilized cells, ethanol yield remained almost constant in the temperature range 25-45 degrees C, and the specific ethanol production rate and specific total sugar uptake rate attained their maximum values at 40 degrees C. For the pH range between 3 and 7, the free-cell optimum for growth and product formation was found to be ca. pH 5. At this pH, the specific growth rate was 0.35 h(-1) and specific ethanol production rate was 2.83 g/g/h. At values higher or lower than pH 5, a sharp decrease in specific ethanol production rate as well as specific growth rate was observed. In comparison, the immobilized cells showed a broad optimum pH profile. The best ethanol production rates were observed between pH 4 and 6.  相似文献   

18.
The non-macrolid polyene antibiotic oleficin, which has been shown to function as an ionophore of Mg2+ in isolated rat liver mitochondria, preferentially inhibited growth of the yeast Saccharomyces cerevisiae on non-fermentable substrates. It uncoupled and inhibited respiration of intact cells and converted both growing and resting cells into respiration-deficient mutants. The mutants arose as a result of fragmentation of the mitochondrial genome. Another antibiotic known to be an ionophore of divalent cations, A23187, also selectively inhibited growth of the yeast on non-fermentable substrates, but did not produce the respiration-deficient mutants, neither antibiotic inhibited the energy-dependent uptake of divalent cations by yeast cells nor opened the plasma membrane for these cations. The results indicate that in Saccharomyces cerevisiae both oleficin and A23187 preferentially affected the mitochondrial membrane without acting as ionophores in the plasma membrane.  相似文献   

19.
Characteristics of sterol uptake in Saccharomyces cerevisiae.   总被引:6,自引:4,他引:2       下载免费PDF全文
A Saccharomyces cerevisiae sterol auxotroph, FY3 (alpha hem1 erg7 ura), was used to probe the characteristics of sterol uptake in S. cerevisiae. The steady-state cellular concentration of free sterol at the late exponential phase of growth could be adjusted within a 10-fold range by varying the concentration of exogenously supplied sterol. When cultured on 1 microgram of sterol ml-1, the cells contained a minimal cellular free-cholesterol concentration of 0.85 nmol/mg (dry weight) and were termed sterol depleted. When cultured on 11 micrograms of sterol ml-1 or more, the cells contained a maximal cellular free-cholesterol concentration of 6.8 nmol/mg (dry weight) and were termed free sterol saturated. Cells with free-sterol concentrations below the maximal level were capable of accumulating free sterol from the medium. The capacity of the cells for cholesterol uptake was inversely proportional to the initial intracellular concentration. The uptake of sterol was shown to be a nonactive process that is independent of cellular energy sources or viability. The intracellular transport of sterol for esterification is not sensitive to anti-microtubule agents.  相似文献   

20.
Saccharomyces cerevisiae contains two genes which encode cyclic AMP (cAMP) phosphodiesterase. We previously isolated and characterized PDE2, which encodes a high-affinity cAMP phosphodiesterase. We have now isolated the PDE1 gene of S. cerevisiae, which encodes a low-affinity cAMP phosphodiesterase. These two genes represent highly divergent branches in the evolution of phosphodiesterases. High-copy-number plasmids containing either PDE1 or PDE2 can reverse the growth arrest defects of yeast cells carrying the RAS2(Val-19) mutation. PDE1 and PDE2 appear to account for the aggregate cAMP phosphodiesterase activity of S. cerevisiae. Disruption of both PDE genes results in a phenotype which resembles that induced by the RAS2(Val-19) mutation. pde1- pde2- ras1- ras2- cells are viable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号