首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
p53 is an important player in the cellular response to genotoxic stress whose functions are regulated by phosphorylation of a number of serine and threonine residues. Phosphorylation of p53 influences its DNA-binding and gene regulation activities. This study examines p53 phosphorylation in HCT-116 (MMR-deficient) and HCT-116+ch3 (MMR-proficient) human colon cancer cells treated with a S(N)2 DNA-alkylating agent, methylmethane sulfonate (MMS). MMS induces phosphorylation of p53 on Ser15 and Ser392 in a dose- and time-dependent manner. MMS-induced p53 phosphorylation is independent of DNA mismatch repair (MMR) activity. Nuclear extracts from MMS-treated HCT-116 cells had higher p21WAF1/Cip1 (p21) promoter DNA-binding activity in vitro opposed to untreated cells. After MMS treatment, the activation of the cloned p21 promoter in a transient transfection assay and endogenous p21 mRNA levels in HCT-116(p53+/+) versus HCT-116(p53-/-) cells increased, which correlates with an increased levels of phospho-p53(Ser15) and phospho-p53(Ser392). These results suggest that SN2 DNA-alkylating agent-induced phosphorylation of p53 on Ser15 and Ser392 increases its DNA-binding properties to cause an increased expression of p21 that may play a role in cell cycle arrest and/or apoptosis of HCT-116 cells.  相似文献   

3.
In the present study we present evidence for the critical role of Sp1 in the mechanism of transactivation of the human cell cycle inhibitor p21(WAF1/Cip1) (p21) gene promoter by the tumor suppressor p53 protein. We found that the distal p53-binding site of the p21 promoter acts as an enhancer on the homologous or heterologous promoters in hepatoma HepG2 cells. In transfection experiments, p53 transactivated the p21 promoter in HaCaT cells that express Sp1 but have a mutated p53 form. In contrast, p53 could not transactivate the p21 promoter in the Drosophila embryo-derived Schneider's SL2 cells that lack endogenous Sp1 or related factors. Cotransfection of SL2 cells with p53 and Sp1 resulted in a synergistic transactivation of the p21 promoter. Synergistic transactivation was greatly decreased in SL2 cells and HaCaT cells by mutations in either the p53-binding site or in the -82/-77 Sp1-binding site indicating functional cooperation between Sp1 and p53 in the transactivation of the p21 promoter. Synergistic transactivation was also decreased by mutations in the transactivation domain of p53. Physical interactions between Sp1 and p53 proteins were established by glutathione S-transferase pull-down and coimmunoprecipitation assays. By using deletion mutants we found that the DNA binding domain of Sp1 is required for its physical interaction with p53. In conclusion, Sp1 must play a critical role in regulating important biological processes controlled by p53 via p21 gene activation such as DNA repair, cell growth, differentiation, and apoptosis.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
To investigate the function of 15-lipoxygenase-1 (15-LOX-1) in human colorectal cancer, we overexpressed 15-LOX-1 in HCT-116 human colorectal cancer cells. Clones expressing the highest levels of 15-LOX-1 displayed reduced viability compared with the HCT-116-Vector control cells. Further, by cell cycle gene array analyses, the cyclin-dependent kinase inhibitor p21WAF1/CIP1 and MDM2 genes were up-regulated in 15-LOX-1-overexpressing cells. The induction of p21(WAF1/CIP1) and MDM2 were linked to activation of p53 by 15-LOX-1, as there was a dramatic induction of phosphorylated p53 (Ser15) in 15-LOX-1-overesxpressing cells. However, the 15-LOX-1 metabolites 13(S)-hydroxyoctadecadienoic acid and 15(S)-hydroxyeicosatetraenoic acid failed to induce phosphorylation of p53 at Ser15, and the 15-LOX-1 inhibitor PD146176 did not inhibit the phosphorylation of p53 at Ser15 in 15-LOX-1-overexpressing cells. Nonetheless, the growth-inhibitory effects of 15-LOX-1 were p53 dependent, as 15-LOX-1 overexpression had no effect on cell growth in p53 (-/-) HCT-116 cells. Finally, treatment of HCT-116-15-LOX-1 cells with different kinase inhibitors suggested that the effects of 15-LOX-1 on p53 phosphorylation and activation were due to effects on DNA-dependent protein kinase. Collectively, these findings suggest a new mechanism to explain the biological activity of 15-LOX-1, where 15-LOX plays a stoichiometric role in activating a DNA-dependent protein kinase-dependent pathway that leads to p53-dependent growth arrest.  相似文献   

12.
13.
14.
15.
16.
Three members of p53 family, p53, p63 and p73, can transactivate their specific target genes through a p53 consensus sequence-binding motif which consists with direct repeats of PuPuPuC(T/A)(T/A)GPyPyPy as a whole-site of p53-binding site. p63, an epidermal stem cells marker, can regulate epidermal development and differentiation, but p53 has no similar biological activity. One isoform of p63, TAp63α, can active an epidermal basal cell marker, keratin 14. However, the p53-binding site does not exist as a whole-site in the K14 promoter region, although it contains three putative p53 half-binding sites at -269 to -1 of the K14 promoter. Two of three putative half-sites of the p53-binding site can be bound by p63α by electrophoresis mobility shift assay and DNA affinity purification assay. Only mutation of the p53 half-binding site at -140 to -131, the TAp63α induced K14 promoter activity can be abolished. This half-site was specifically activated by p63, but not by p53. Once we extend this p53 half-site to a whole p53-binding site in K14 promoter, both p53 and p63 expression vectors can activate its activity. Therefore, we propose that the different length of p53-binding site would determinate the gene regulated by different p53 family proteins.  相似文献   

17.
Chemoresistance is a key cause of treatment failure in colon cancer. MiR-22 is a tumor-suppressing microRNA. To explore whether miR-22 is an important player in the development of chemoresistance in colon cancer, we overexpressed miR-22 and subsequently tested its role in cell proliferation, apoptosis, survival, and associated signaling in p53-mutated HT-29 and HCT-15 cells, and p53 wild-type HCT-116 cells. We further investigated the role of miR-22 on cytotoxicity of paclitaxel in both the p53-mutated and p53 wild-type colon cancer cells. Results showed that HT-29 and HCT-15 cells were resistant to paclitaxel-induced cytotoxicity, which normally inhibits cell proliferation and survival, and induces apoptosis. Conversely, HCT-116 was relatively sensitive to the cytotoxicity of paclitaxel. Overexpression of miR-22 significantly decreased cell proliferation and survival, and induced cell apoptosis in the p53-mutated colon cancer cells, but played no role in the p53 wild-type cells. Importantly, miR-22 overexpression enhanced the cytotoxic role of paclitaxel in p53-mutated HT-29 and HCT-15 cells, but not in p53 wild-type HCT-116 cell. We further demonstrated that the tumor-suppressive role of miR-22 in p53-mutated colon cancer cells was mediated by upregulating PTEN expression, which negatively regulated Akt phosphorylation at Ser(473) and MTDH expression, and subsequently increased Bax and active caspase-3 levels. Our study is the first to identify the tumor-suppressive role of miR-22 and its associated signaling in the p53-mutated colon cancer cells and highlighted the chemosensitive role of miR-22.  相似文献   

18.
We investigated the mechanisms of inhibitory effect of growth hormone-releasing hormone (GHRH) antagonist JMR-132 on the growth of HT29, HCT-116 and HCT-15 human colon cancer cells in vitro and in vivo. High-affinity binding sites for GHRH and mRNA for GHRH and splice variant-1 (SV1) of the GHRH receptor were found in all three cell lines tested. Proliferation of HT-29, HCT-116 and HCT-15 cells was significantly inhibited in vitro by JMR-132. Time course studies revealed that the treatment of human HCT-116 colon cancer cells with 10μM GHRH antagonist JMR-132 causes a significant DNA damage as shown by an increase in olive tail moment (OTM) and loss of inner mitochondrial membrane potential (?Ψm). Western blotting demonstrated a time-dependent increase in protein levels of phospho-p53 (Ser46), Bax, cleaved caspase-9, -3, cleavage of poly(ADP-ribose)polymerase (PARP) and a decrease in Bcl-2 levels. An augmentation in cell cycle checkpoint protein p21Waf1/Cip1 was accompanied by a cell cycle arrest in S-phase. DNA fragmentation visualized by the comet assay and the number of apoptotic cells increased time dependently as determined by flow cytometric annexinV and PI staining assays. In vivo, JMR-132 decreased the volume of HT-29, HCT-116 and HCT-15 tumors xenografted into athymic mice up to 75% (p  相似文献   

19.
The human AP-endonuclease (APE1/Ref-1), an essential multifunctional protein, plays a central role in the repair of oxidative base damage via the DNA base excision repair (BER) pathway. The mammalian AP-endonuclease (APE1) overexpression is often observed in tumor cells, and confers resistance to various anticancer drugs; its downregulation sensitizes tumor cells to those agents via induction of apoptosis. Here we show that wild type (WT) but not mutant p53 negatively regulates APE1 expression. Time-dependent decrease was observed in APE1 mRNA and protein levels in the human colorectal cancer line HCT116 p53(+/+), but not in the isogenic p53 null mutant after treatment with camptothecin, a DNA topoisomerase I inhibitor. Furthermore, ectopic expression of WTp53 in the p53 null cells significantly reduced both endogenous APE1 and APE1 promoter-dependent luciferase expression in a dose-dependent fashion. Chromatin immunoprecipitation assays revealed that endogenous p53 is bound to the APE1 promoter region that includes a Sp1 site. We show here that WTp53 interferes with Sp1 binding to the APE1 promoter, which provides a mechanism for the downregulation of APE1. Taken together, our results demonstrate that WTp53 is a negative regulator of APE1 expression, so that repression of APE1 by p53 could provide an additional pathway for p53-dependent induction of apoptosis in response to DNA damage.  相似文献   

20.
Tumor suppressor p53 plays a critical role in cellular responses, such as cell cycle arrest and apoptosis following DNA damage. DNA damage-induced cell death can be mediated by a p53-dependent or p53-independent pathway. Although p53-mediated apoptosis has been well documented, little is known about the signaling components of p53-independent cell death. Here we report that the death domain kinase, RIP (receptor-interacting protein), is important for DNA damage-induced, p53-independent cell death. DNA damage induces cell death in both wild-type and p53-/- mouse embryonic fibroblast cells. We found that RIP-/- mouse embryonic fibroblast cells, which have a mutant form of the p53 protein, are resistant to DNA damage-induced cell death. The reconstitution of RIP protein expression in RIP-/- cells restored the sensitivity of cells to DNA damage-induced cell death. We also found that RIP mediates this process through activating mitogen-activated protein kinase, JNK1. Furthermore, knocking down the expression of RIP blocked DNA damage-induced cell death in the human colon cancer cell line, p53 null HCT 116. Taken together, our study demonstrates that RIP is one of the critical components involved in mediating DNA damage-induced, p53-independent cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号