首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large‐scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT‐1/TPI image stack) for detecting peatlands in a 2715 km2 area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km2) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling‐up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above‐ and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts.  相似文献   

2.
Tropical peatlands are a known source of methane (CH4) to the atmosphere, but their contribution to atmospheric CH4 is poorly constrained. Since the 1980s, extensive areas of the peatlands in Southeast Asia have experienced land‐cover change to smallholder agriculture and forest plantations. This land‐cover change generally involves lowering of groundwater level (GWL), as well as modification of vegetation type, both of which potentially influence CH4 emissions. We measured CH4 exchanges at the landscape scale using eddy covariance towers over two land‐cover types in tropical peatland in Sumatra, Indonesia: (a) a natural forest and (b) an Acacia crassicarpa plantation. Annual CH4 exchanges over the natural forest (9.1 ± 0.9 g CH4 m?2 year?1) were around twice as high as those of the Acacia plantation (4.7 ± 1.5 g CH4 m?2 year?1). Results highlight that tropical peatlands are significant CH4 sources, and probably have a greater impact on global atmospheric CH4 concentrations than previously thought. Observations showed a clear diurnal variation in CH4 exchange over the natural forest where the GWL was higher than 40 cm below the ground surface. The diurnal variation in CH4 exchanges was strongly correlated with associated changes in the canopy conductance to water vapor, photosynthetic photon flux density, vapor pressure deficit, and air temperature. The absence of a comparable diurnal pattern in CH4 exchange over the Acacia plantation may be the result of the GWL being consistently below the root zone. Our results, which are among the first eddy covariance CH4 exchange data reported for any tropical peatland, should help to reduce the uncertainty in the estimation of CH4 emissions from a globally important ecosystem, provide a more complete estimate of the impact of land‐cover change on tropical peat, and develop science‐based peatland management practices that help to minimize greenhouse gas emissions.  相似文献   

3.
The tropical peatlands of southern Brazil are essential for the maintenance of the Atlantic Rain Forest, one of the 25 hotspots of biodiversity in the world. Although diazotrophic micro-organisms are essential for the maintenance of this nitrogen limited ecosystem, so far studies have focused only on micro-organisms involved in the carbon cycle. In this work, peat samples were collected from three tropical peatland regions during dry and rainy seasons and their chemical and microbial characteristics were evaluated. Our results showed that the structure of the diazotrophic communities in the Brazilian tropical peatlands differs in the evaluated seasons. The abundance of the genus Bradyrhizobium showed to be affected by rainfall and peat pH. Despite the shifts of the nitrogen-fixing population in the tropical peatland caused by seasonality it showed to be constantly dominated by α-Proteobacteria followed by Cyanobacteria. In addition, more than 50% of nifH gene sequences have not been classified, indicating the necessity for more studies in tropical peatland, since the reduction of N supply in the peatlands stimulates the recalcitrant organic matter decomposition performed by peatland micro-organisms, influencing the C stock.  相似文献   

4.
Tropical peatlands are vital ecosystems that play an important role in global carbon storage and cycles. Current estimates of greenhouse gases from these peatlands are uncertain as emissions vary with environmental conditions. This study provides the first comprehensive analysis of managed and natural tropical peatland GHG fluxes: heterotrophic (i.e. soil respiration without roots), total CO2 respiration rates, CH4 and N2O fluxes. The study documents studies that measure GHG fluxes from the soil (n = 372) from various land uses, groundwater levels and environmental conditions. We found that total soil respiration was larger in managed peat ecosystems (median = 52.3 Mg CO2 ha?1 year?1) than in natural forest (median = 35.9 Mg CO2 ha?1 year?1). Groundwater level had a stronger effect on soil CO2 emission than land use. Every 100 mm drop of groundwater level caused an increase of 5.1 and 3.7 Mg CO2 ha?1 year?1 for plantation and cropping land use, respectively. Where groundwater is deep (≥0.5 m), heterotrophic respiration constituted 84% of the total emissions. N2O emissions were significantly larger at deeper groundwater levels, where every drop in 100 mm of groundwater level resulted in an exponential emission increase (exp(0.7) kg N ha?1 year?1). Deeper groundwater levels induced high N2O emissions, which constitute about 15% of total GHG emissions. CH4 emissions were large where groundwater is shallow; however, they were substantially smaller than other GHG emissions. When compared to temperate and boreal peatland soils, tropical peatlands had, on average, double the CO2 emissions. Surprisingly, the CO2 emission rates in tropical peatlands were in the same magnitude as tropical mineral soils. This comprehensive analysis provides a great understanding of the GHG dynamics within tropical peat soils that can be used as a guide for policymakers to create suitable programmes to manage the sustainability of peatlands effectively.  相似文献   

5.
高海拔泥炭地是维护高原气候环境稳定的重要生态系统,由于其兼具高海拔和高寒的特点,对气候变化尤为敏感。若尔盖高原泥炭地是中国高海拔泥炭地集中分布区,碳储量丰富,由于方法学差异及数据缺乏,其碳储量估算仍存在一定程度的不确定性,对长时间尺度碳通量的模拟研究还较为匮乏。因此,以若尔盖高原泥炭地为研究对象,基于若尔盖高原泥炭地每千年的面积变化和碳累积速率重新评估若尔盖高原泥炭地碳储量,并利用泥炭分解模型和碳通量重建模型探讨了15000年以来若尔盖高原泥炭地碳通量动态。研究结果表明,若尔盖高原泥炭地约从15000年开始发育,发育高峰期在12000-10000年和7000-5000年,泥炭累积速率范围为0.22-1.31 mm/a,平均值为0.56 mm/a;碳累积速率范围为13.4-77.2 g C m-2 a-1,平均碳累积速率为33.5 g C m-2 a-1,3000年至今碳累积速率最高,7000-6000年是碳累积速率次峰值时期;15000年以来若尔盖高原泥炭地碳储存量达1.4 Pg(1 Pg=1015 g),碳累积输入和碳累积释放分别为5.6 Pg和4.2 Pg;净碳平衡平均值为0.087 Tg(1 Tg=1012 g)C/a,峰值出现在11000-10000年为0.295 Pg;在6000-2000年若尔盖泥炭地出现微弱碳源,最大值出现在5000-4000年,约为-0.034 Pg,净碳平衡在15000-11000年和4000年至今呈现上升趋势,而10000-4000年整体呈现下降趋势。总体而言,若尔盖高原泥炭地碳储量丰富,是青藏高原东部重要的陆地生态系统碳库和碳汇,本研究将为我国高海拔泥炭地碳库保育提供一定的理论和数据支撑。  相似文献   

6.
The carbon (C) dynamics of tropical peatlands can be of global importance, because, particularly in Southeast Asia, they are the source of considerable amounts of C released to the atmosphere as a result of land‐use change and fire. In contrast, the existence of tropical peatlands in Amazonia has been documented only recently. According to a recent study, the 120 000 km2 subsiding Pastaza‐Marañón foreland basin in Peruvian Amazonia harbours previously unstudied and up to 7.5 m thick peat deposits. We studied the role of these peat deposits as a C reserve and sink by measuring peat depth, radiocarbon age and peat and C accumulation rates at 5–13 sites. The basal ages varied from 1975 to 8870 cal yr bp , peat accumulation rates from 0.46 to 9.31 mm yr?1 and C accumulation rates from 28 to 108 g m?2 yr?1. The total peatland area and current peat C stock within the area of two studied satellite images were 21 929 km2 and 3.116 Gt (with a range of 0.837–9.461 Gt). The C stock is 32% (with a range of 8.7–98%) of the best estimate of the South American tropical peatland C stock and 3.5% (with a range of 0.9–10.7%) of the best estimate of the global tropical peatland C stock. The whole Pastaza‐Marañón basin probably supports about twice this peatland area and peat C stock. In addition to their contemporary geographical extent, these peatlands probably also have a large historical (vertical) extension because of their location in a foreland basin characterized by extensive river sedimentation, peat burial and subsidence for most of the Quaternary period. Burial of peat layers in deposits of up to 1 km thick Quaternary river sediments removes C from the short‐term C cycle between the biosphere and atmosphere, generating a long‐term C sink.  相似文献   

7.
The fungal and bacterial activity was determined in 20 northern European peatlands ranging from ombrotrophic bogs to eutrophic fens with key differences in degree of humification, pH, dry bulk density, carbon (C) content and vegetation communities using the selective inhibition (SI) technique. These peatlands were partly disturbed and the respective water tables lowered below the surface layer. Basal respiration ranged from 24 to 128 µg CO2-C g?1 dry peat d?1. Bacterial contributions to CO2 production were high in most peatlands and showed the following pattern: eutrophic >> transitional ≥ mesotrophic >> ombrotrophic peatland types. The fungal-to-bacterial (F:B) ratios varied substantially within peatland type, and this was mainly attributed to differences in peat botanical compositions and chemistry. The computed mean Inhibitor Additivity Ratio (IAR) was quite close to 1 to suggest that the SI techniques can be used to partition eukaryotic and prokaryotic activity in wide range of peatlands. Overall, basal respiration, microbial biomass-C, fungal and bacterial activities varied across the studied peatland types, and such differences could have consequences for C- and nutrient-cycling as well as how bogs and fens will respond to environmental changes.  相似文献   

8.
Tropical peatlands cover over 25 Mha in Southeast Asia and are estimated to contain around 70 Gt of carbon. Peat swamp forest ecosystems are an important part of the region's natural resources supporting unique flora and fauna endemic to Southeast Asia. Over recent years, industrial plantation development on peatland, especially for oil palm cultivation, has created intense debate due to its potentially adverse social and environmental effects. The lack of objective up‐to‐date information on the extent of industrial plantations has complicated quantification of their regional and global environmental consequences, both in terms of loss of forest and biodiversity as well as increases in carbon emissions. Based on visual interpretation of high‐resolution (30 m) satellite images, we find that industrial plantations covered over 3.1 Mha (20%) of the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2010, surpassing the area of Belgium and causing an annual carbon emission from peat decomposition of 230–310 Mt CO2e. The majority (62%) of the plantations were located on the island of Sumatra, and over two‐thirds (69%) of all industrial plantations were developed for oil palm cultivation, with the remainder mostly being Acacia plantations for paper pulp production. Historical analysis shows strong acceleration of plantation development in recent years: 70% of all industrial plantations have been established since 2000 and only 4% of the current plantation area existed in 1990. ‘Business‐as‐usual’ projections of future conversion rates, based on historical rates over the past two decades, indicate that 6–9 Mha of peatland in insular Southeast Asia may be converted to plantations by the year 2020, unless land use planning policies or markets for products change. This would increase the annual carbon emission to somewhere between 380 and 920 Mt CO2e by 2020 depending on water management practices and the extent of plantations.  相似文献   

9.
Tropical peatlands play an important role in the global storage and cycling of carbon (C) but information on carbon dioxide (CO2) and methane (CH4) fluxes from these systems is sparse, particularly in the Neotropics. We quantified short and long‐term temporal and small scale spatial variation in CO2 and CH4 fluxes from three contrasting vegetation communities in a domed ombrotrophic peatland in Panama. There was significant variation in CO2 fluxes among vegetation communities in the order Campnosperma panamensis > Raphia taedigera > Cyperus. There was no consistent variation among sites and no discernible seasonal pattern of CH4 flux despite the considerable range of values recorded (e.g. ?1.0 to 12.6 mg m?2 h?1 in 2007). CO2 fluxes varied seasonally in 2007, being greatest in drier periods (300–400 mg m?2 h?1) and lowest during the wet period (60–132 mg m?2 h?1) while very high emissions were found during the 2009 wet period, suggesting that peak CO2 fluxes may occur following both low and high rainfall. In contrast, only weak relationships between CH4 flux and rainfall (positive at the C. panamensis site) and solar radiation (negative at the C. panamensis and Cyperus sites) was found. CO2 fluxes showed a diurnal pattern across sites and at the Cyperus sp. site CO2 and CH4 fluxes were positively correlated. The amount of dissolved carbon and nutrients were strong predictors of small scale within‐site variability in gas release but the effect was site‐specific. We conclude that (i) temporal variability in CO2 was greater than variation among vegetation communities; (ii) rainfall may be a good predictor of CO2 emissions from tropical peatlands but temporal variation in CH4 does not follow seasonal rainfall patterns; and (iii) diurnal variation in CO2 fluxes across different vegetation communities can be described by a Fourier model.  相似文献   

10.
Northern peatlands form a major soil carbon (C) stock. With climate change, peatland C mineralization is expected to increase, which in turn would accelerate climate change. A particularity of peatlands is the importance of soil aeration, which regulates peatland functioning and likely modulates the responses to warming climate. Our aim is to assess the impacts of warming on a southern boreal and a sub‐arctic sedge fen carbon dioxide (CO2) exchange under two plausible water table regimes: wet and moderately dry. We focused this study on minerotrophic treeless sedge fens, as they are common peatland types at boreal and (sub)arctic areas, which are expected to face the highest rates of climate warming. In addition, fens are expected to respond to environmental changes faster than the nutrient poor bogs. Our study confirmed that CO2 exchange is more strongly affected by drying than warming. Experimental water level draw‐down (WLD) significantly increased gross photosynthesis and ecosystem respiration. Warming alone had insignificant impacts on the CO2 exchange components, but when combined with WLD it further increased ecosystem respiration. In the southern fen, CO2 uptake decreased due to WLD, which was amplified by warming, while at northern fen it remained stable. As a conclusion, our results suggest that a very small difference in the WLD may be decisive, whether the C sink of a fen decreases, or whether the system is able to adapt within its regime and maintain its functions. Moreover, the water table has a role in determining how much the increased temperature impacts the CO2 exchange.  相似文献   

11.
How strong is the current carbon sequestration of an Atlantic blanket bog?   总被引:1,自引:0,他引:1  
Although northern peatlands cover only 3% of the land surface, their thick peat deposits contain an estimated one‐third of the world's soil organic carbon (SOC). Under a changing climate the potential of peatlands to continue sequestering carbon is unknown. This paper presents an analysis of 6 years of total carbon balance of an almost intact Atlantic blanket bog in Glencar, County Kerry, Ireland. The three components of the measured carbon balance were: the land‐atmosphere fluxes of carbon dioxide (CO2) and methane (CH4) and the flux of dissolved organic carbon (DOC) exported in a stream draining the peatland. The 6 years C balance was computed from 6 years (2003–2008) of measurements of meteorological and eddy‐covariance CO2 fluxes, periodic chamber measurements of CH4 fluxes over 3.5 years, and 2 years of continuous DOC flux measurements. Over the 6 years, the mean annual carbon was ?29.7±30.6 (±1 SD) g C m?2 yr?1 with its components as follows: carbon in CO2 was a sink of ?47.8±30.0 g C m?2 yr?1; carbon in CH4 was a source of 4.1±0.5 g C m?2 yr?1 and the carbon exported as stream DOC was a source of 14.0±1.6 g C m?2 yr?1. For 2 out of the 6 years, the site was a source of carbon with the sum of CH4 and DOC flux exceeding the carbon sequestered as CO2. The average C balance for the 6 years corresponds to an average annual growth rate of the peatland surface of 1.3 mm yr?1.  相似文献   

12.
Measurements of the spatial variability of methane (CH4) emissions, net CO2 ecosystem exchange (NEE), and dissolved carbon (CH4, CO2, and DOC) were made in a boreal patterned peatland in northern Sweden in the summers (May to September) of 1992 and 1993. Carbon balance terms were measured and the carbon balance inferred at different peatland surface topography features (e.g. ridges, lawns, and pools) and at different positions within the peatland (e.g. plateau, margin). Combining these data permits a comparison of the carbon balance at the peatland scale for the two field seasons. Trends in the spatial variability of the net carbon storage, as determined by the difference between inputs and outputs, suggest that carbon storage decreased in lawns from the margin of the peatland to the central plateau, while the reverse trend occurred in ridges. This indicates a difference in carbon exchange processes between sites with different surface topography due to differences in soil moisture and temperature. Total carbon storage for the peatland, weighted for topographic variability, indicates that the peatland gained carbon in 1992 (2.0 g C m? 2), but lost carbon in 1993 ( ? 7.6 g C m? 2). There was little variation in mean seasonal air temperature and total precipitation between the two years suggesting that the timing and magnitude of temperature and precipitation variation within the growing season are important for the season carbon balance. Because the carbon storage differences were small relative to the potential errors we conclude that the peatland was neither a net sink nor source of atmospheric carbon. This research demonstrates the importance of position in a peatland for the inference of long‐term carbon accumulation and the assessment of contemporary exchange rates.  相似文献   

13.
Testate amoebae are a group of moisture-sensitive, shell-producing protozoa that have been widely used as indicators of changes in mean water-table depth within oligotrophic peatlands. However, short-term environmental variability (i.e., sub-annual) also probably influences community composition. The objective of this study was to assess the potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum-dominated peatlands. Testate amoebae and environmental conditions, including hourly measurements of relative humidity within the upper centimeter of the peatland surface, were examined throughout the 2008 growing season at 72 microsites within 11 peatlands of Pennsylvania and Wisconsin, USA. Relationships among testate amoeba communities, vegetation, depth to water table, pH, and an index of short-term environmental variability (EVI), were examined using nonmetric multidimensional scaling and correlation analysis. Results suggest that EVI influences testate amoeba communities, with some taxa more abundant under highly variable conditions (e.g., Arcella discoides, Difflugia pulex, and Hyalosphenia subflava) and others more abundant when environmental conditions at the peatland surface were relatively stable (e.g., Archerella flavum and Bullinularia indica). The magnitude of environmental variability experienced at the peatland surface appears to be primarily controlled by vegetation composition and density. In particular, sites with dense Sphagnum cover had lower EVI values than sites with loose-growing Sphagnum or vegetation dominated by vascular plants and/or non-Sphagnum bryophytes. Our results suggest that more environmental information may be inferred from testate amoebae than previously recognized. Knowledge of relationships between testate amoebae and short-term environmental variability should lead to more detailed and refined environmental inferences.  相似文献   

14.
It is anticipated that a lowering of the water table and reduced soil moisture levels in peatlands may increase peat decomposition rates and consequently affect nutrient availability. However, it is not clear if patterns will be consistent across different peatland types or within peatlands given the natural range of ecohydrological conditions within these systems. We examined the effect of persistent drought on peatland nutrient dynamics by quantifying the effects of an experimentally lowered water table position (drained for a 10-year period) on peat KCl-extractable total inorganic nitrogen (ext-TIN), peat KCl-extractable nitrate (ext-NO3 ?), and water-extractable ortho-phosphorus (ext-PO4 3?) concentrations and net phosphorus (P) and nitrogen (N) mineralization and nitrification rates at natural (control) and drained microforms (hummocks, lawns) of a bog and poor fen near Québec City, Canada. Drainage (water table drawdown) decreased net nitrification rates across the landscape and increased ext-NO3 ? concentrations, but did not affect net N and P mineralization rates or ext-TIN and ext-PO4 3? concentrations. We suggest that the thick capillary fringe at the drained peatland likely maintained sufficient moisture above the water table to limit the effects of drainage on microbial activity, and a 20 cm lowering of the water table does not appear to have been sufficient to create a clear difference in nutrient dynamics in this peatland landscape. We found some evidence of differences in nutrient concentrations with microforms, where concentrations were greater in lawn than hummock microforms at control sites indicating some translocation of nutrients. In general, the same microtopographic differences were not observed at drained sites. The general spatial patterns in nutrient concentrations did not reflect net mineralization/immobilization rates measured at our control or drained peatlands. Rather, the spatial patterns in nutrient availability may be regulated by differences in vegetation (mainly Sphagnum moss) cover between control and drained sites and possibly differences in hydrologic connection between microforms. Our results suggest that microform distribution and composition within a peatland may be important for determining how peatland nutrient dynamics will respond to water table drawdown in northern peatlands, as some evidence of microtopographic differences in nutrient dynamics was found.  相似文献   

15.
Throughout the Holocene, northern peatlands have both accumulated carbon and emitted methane. Their impact on climate radiative forcing has been the net of cooling (persistent CO2 uptake) and warming (persistent CH4 emission). We evaluated this by developing very simple Holocene peatland carbon flux trajectories, and using these as inputs to a simple atmospheric perturbation model. Flux trajectories are based on estimates of contemporary CH4 flux (15–50 Tg CH4 yr−1), total accumulated peat C (250–450 Pg C), and peatland initiation dates. The contemporary perturbations to the atmosphere due to northern peatlands are an increase of ∼100 ppbv CH4 and a decrease of ∼35 ppmv CO2. The net radiative forcing impact northern peatlands is currently about −0.2 to −0.5 W m−2 (a cooling). It is likely that peatlands initially caused a net warming of up to +0.1 W m−2, but have been causing an increasing net cooling for the past 8000–11 000 years. A series of sensitivity simulations indicate that the current radiative forcing impact is determined primarily by the magnitude of the contemporary methane flux and the magnitude of the total C accumulated as peat, and that radiative forcing dynamics during the Holocene depended on flux trajectory, but the overall pattern was similar in all cases.  相似文献   

16.
The effect of the water table on nitrous oxide (N2O) fluxes from peat profiles representing boreal peatlands of differing nutrient status was studied in the laboratory. Lowering of the water table in peat monoliths taken from two natural waterlogged peatlands for 14 weeks in a greenhouse at 20 °C increased the fluxes of N2O, an effect that was enhanced further by incubation in the dark. Raising of the water table in monoliths from two drained and forested peatlands caused cessation of the N2O fluxes from the drained peats, which had previously been sources of N2O. It is known that N2O fluxes have increased in peatlands drained several decades ago. The results suggest that it is not necessary for the water table to be lowered for several years to change a boreal peatland from a N2O sink to a source of the gas. In addition to the draining of peatlands, climate change can be expected to lower ground water levels during the summertime in the boreal zone, and this could cause marked changes in N2O fluxes from boreal peatlands by enhancing the microbial processes involved in nitrogen transformations.  相似文献   

17.
The majority of northern peatlands were initiated during the Holocene. Owing to their mass imbalance, they have sequestered huge amounts of carbon in terrestrial ecosystems. Although recent syntheses have filled some knowledge gaps, the extent and remoteness of many peatlands pose challenges to developing reliable regional carbon accumulation estimates from observations. In this work, we employed an individual‐ and patch‐based dynamic global vegetation model (LPJ‐GUESS) with peatland and permafrost functionality to quantify long‐term carbon accumulation rates in northern peatlands and to assess the effects of historical and projected future climate change on peatland carbon balance. We combined published datasets of peat basal age to form an up‐to‐date peat inception surface for the pan‐Arctic region which we then used to constrain the model. We divided our analysis into two parts, with a focus both on the carbon accumulation changes detected within the observed peatland boundary and at pan‐Arctic scale under two contrasting warming scenarios (representative concentration pathway—RCP8.5 and RCP2.6). We found that peatlands continue to act as carbon sinks under both warming scenarios, but their sink capacity will be substantially reduced under the high‐warming (RCP8.5) scenario after 2050. Areas where peat production was initially hampered by permafrost and low productivity were found to accumulate more carbon because of the initial warming and moisture‐rich environment due to permafrost thaw, higher precipitation and elevated CO2 levels. On the other hand, we project that areas which will experience reduced precipitation rates and those without permafrost will lose more carbon in the near future, particularly peatlands located in the European region and between 45 and 55°N latitude. Overall, we found that rapid global warming could reduce the carbon sink capacity of the northern peatlands in the coming decades.  相似文献   

18.
Northern boreal peatlands are important ecosystems in modulating global biogeochemical cycles, yet their biological communities and related carbon dynamics are highly sensitive to changes in climate. Despite this, the strength and recent direction of these feedbacks are still unclear. The response of boreal peatlands to climate warming has received relatively little attention compared with other northern peatland types, despite forming a large northern hemisphere‐wide ecosystem. Here, we studied the response of two ombrotrophic boreal peatlands to climate variability over the last c. 200 years for which local meteorological data are available. We used remains from plants and testate amoebae to study historical changes in peatland biological communities. These data were supplemented by peat property (bulk density, carbon and nitrogen content), 14C, 210Pb and 137Cs analyses and were used to infer changes in peatland hydrology and carbon dynamics. In total, six peat cores, three per study site, were studied that represent different microhabitats: low hummock (LH), high lawn and low lawn. The data show a consistent drying trend over recent centuries, represented mainly as a change from wet habitat Sphagnum spp. to dry habitat S. fuscum. Summer temperature and precipitation appeared to be important drivers shaping peatland community and surface moisture conditions. Data from the driest microhabitat studied, LH, revealed a clear and strong negative linear correlation (R2 = .5031; p < .001) between carbon accumulation rate and peat surface moisture conditions: under dry conditions, less carbon was accumulated. This suggests that at the dry end of the moisture gradient, availability of water regulates carbon accumulation. It can be further linked to the decreased abundance of mixotrophic testate amoebae under drier conditions (R2 = .4207; p < .001). Our study implies that if effective precipitation decreases in the future, the carbon uptake capacity of boreal bogs may be threatened.  相似文献   

19.
Under the warmer climate, predicted for the future, northern peatlands are expected to become drier. This drying will lower the water table and likely result in reduced emissions of methane (CH4) from these ecosystems. However, the prediction of declining CH4 fluxes does not consider the potential effects of ecological succession, particularly the invasion of sedges into currently wet sites (open water pools, low lawns). The goal of this study was to characterize the relationship between the presence of sedges in peatlands and CH4 efflux under natural conditions and under a climate change simulation (drained peatland). Methane fluxes, gross ecosystem production, and dissolved pore water CH4 concentrations were measured and a vegetation survey was conducted in a natural and drained peatland near St. Charles-de-Bellechasse, Quebec, Canada, in the summer of 2003. Each peatland also had plots where the sedges had been removed by clipping. Sedges were larger, more dominant, and more productive at the drained peatland site. The natural peatland had higher CH4 fluxes than the drained peatland, indicating that drainage was a significant control on CH4 flux. Methane flux was higher from plots with sedges than from plots where sedges had been removed at the natural peatland site, whereas the opposite case was observed at the drained peatland site. These results suggest that CH4 flux was enhanced by sedges at the natural peatland site and attenuated by sedges at the drained peatland site. However, the attenuation of CH4 flux due to sedges at the drained site was reduced in wetter periods. This finding suggests that CH4 flux could be decreased in the event of climate warming due to the greater depth to the water table, and that sedges colonizing these areas could further attenuate CH4 fluxes during dry periods. However, during wet periods, the sedges may cause CH4 fluxes to be higher than is currently predicted for climate change scenarios.  相似文献   

20.
Capsule Peatlands are very important habitats for birds despite low species diversity.

Aims To describe the variation in breeding bird populations that occur on different types of Irish peatlands and their associated habitat characteristics.

Methods Bird abundance and diversity were compared between four peatland habitat types (fens, raised bogs, Atlantic blanket bogs and montane blanket bogs) at 12 study sites using transects. Various measures of habitat quality were also taken at each location.

Results Only 21 species were recorded during the study, with Meadow Pipit Anthus pratensis and Sky Lark Alauda arvensis accounting for over 80% of all birds recorded. Fens had greater bird species diversity and densities than the other three peatland types. Raised bogs, Atlantic blanket bogs and montane blanket bogs were very similar in terms of their avian diversity. Each of the recorded bird species was associated with different aspects of the peatland habitat.

Conclusion This study shows that despite the relatively low avian species diversity of Irish peatlands, they are of enormous conservation value due to the presence of species of high conservation concern such as Willow Ptarmigan (Red Grouse) Lagopus lagopus and Eurasian Curlew Numenius arquata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号