首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Rossmanith W 《PloS one》2011,6(4):e19152
RNase Z is an endonuclease responsible for the removal of 3' extensions from tRNA precursors, an essential step in tRNA biogenesis. Human cells contain a long form (RNase Z(L)) encoded by ELAC2, and a short form (RNase Z(S); ELAC1). We studied their subcellular localization by expression of proteins fused to green fluorescent protein. RNase Z(S) was found in the cytosol, whereas RNase Z(L) localized to the nucleus and mitochondria. We show that alternative translation initiation is responsible for the dual targeting of RNase Z(L). Due to the unfavorable context of the first AUG of ELAC2, translation apparently also starts from the second AUG, whereby the mitochondrial targeting sequence is lost and the protein is instead routed to the nucleus. Our data suggest that RNase Z(L) is the enzyme involved in both, nuclear and mitochondrial tRNA 3' end maturation.  相似文献   

3.
The mod5-1 mutation is a nuclear mutation in Saccharomyces cerevisiae that reduces the biosynthesis of N6-(delta 2-isopentenyl)adenosine in both cytoplasmic and mitochondrial tRNAs to less than 1.5% of wild-type levels. The tRNA modification enzyme, delta 2-isopentenyl pyrophosphate:tRNA isopentenyl transferase, cannot be detected in vitro with extracts from mod5-1 cells. A characterization of the MOD5 gene would help to determine how the same enzyme activity in different cellular compartments can be abolished by a single nuclear mutation. To that end we have cloned the MOD5 gene and shown that it restores delta 2-isopentenyl pyrophosphate:tRNA isopentenyl transferase activity and N6-(delta 2-isopentenyl)adenosine to tRNA in both the mitochondria and the nucleus/cytoplasm compartments of mod5-1 yeast cells. That MOD5 sequences are expressed in Escherichia coli and can complement an N6-(delta 2-isopentenyl)-2-methylthioadenosine-deficient E. coli mutant leads us to conclude that MOD5 is the structural gene for delta 2-isopentenyl pyrophosphate:tRNA isopentenyl transferase.  相似文献   

4.
5.
The plant aspartate aminotransferase gene family   总被引:4,自引:0,他引:4  
  相似文献   

6.
7.
Kim HY  Gladyshev VN 《Biochemistry》2005,44(22):8059-8067
Oxidized forms of methionine residues in proteins can be repaired by methionine-S-sulfoxide reductase (MsrA) and methionine-R-sulfoxide reductase (MsrB). In mammals, three MsrBs are present, which are targeted to various subcellular compartments. In contrast, only a single mammalian MsrA gene is known whose products have been detected in both cytosol and mitochondria. Factors that determine the location of the protein in these compartments are not known. Here, we found that MsrA was present in cytosol, nucleus, and mitochondria in mouse cells and tissues and that the major enzyme forms detected in various compartments were generated from a single-translation product rather than by alternative translation initiation. Both cytosolic and mitochondrial forms were processed with respect to the N-terminal signal peptide, and the distribution of the protein occurred post-translationally. Deletion of amino acids 69-108, 69-83, 84-108, or 217-233, which contained elements important for MsrA structure and function, led to exclusive mitochondrial location of MsrA, whereas a region that affected substrate binding but was not part of the overall fold had no influence on the subcellular distribution. The data suggested that proper structure-function organization of MsrA played a role in subcellular distribution of this protein in mouse cells. These findings were recapitulated by expressing various forms of mouse MsrA in Saccharomyces cerevisiae, suggesting conservation of the mechanisms responsible for distribution of the mammalian enzyme among different cellular compartments.  相似文献   

8.
Acetaldehyde and biogenic aldehydes were used as substrates to investigate the subcellular distribution of aldehyde dehydrogenase activity in autopsied human brain. With 10 microM acetaldehyde as substrate, over 50% of the total activity was found in the mitochondrial fraction and 38% was associated with the cytosol. However, with 4 microM 3,4-dihydroxyphenylacetaldehyde and 10 microM indoleacetaldehyde as substrates, 40-50% of the total activity was found in the soluble fraction, the mitochondrial fraction accounting for only 15-30% of the total activity. These data suggested the presence of distinct aldehyde dehydrogenase isozymes in the different compartments. The mitochondrial and cytosolic fractions were, therefore, subjected to salt fractionation and ion-exchange chromatography to purify further the isozymes present in both fractions. The kinetic data on the partially purified isozymes revealed the presence of a low Km isozyme in both the mitochondria and the cytosol, with Km values for acetaldehyde of 1.7 microM and 10.2 microM, respectively. However, the cytosolic isozyme exhibited lower Km values for the biogenic aldehydes. Both isozymes were activated by Mg2+ and Ca2+ in phosphate buffers (pH 7.4). Also, high Km isozymes were found in the mitochondria and in the microsomes.  相似文献   

9.
Tissue-specific isozymes of glutamine synthetase are present in elasmobranchs. A larger isozyme occurs in tissues in which the enzyme is localized in mitochondria (liver, kidney) whereas a smaller form occurs in tissues in which it is cytosolic (brain, spleen, etc.). The nucleotide sequence of spiny dogfish shark (Squalus acanthias) liver glutamine synthetase mRNA, derived from its cDNA, shows there are two in-frame initiation codons (AUG) at the N-terminus which will account for the size differences between the two isozymes. Initiation at the up-stream and down-stream sites would yield peptides of 45,406 and 41,869 mol. wts. representing the precursor of the mitochondrial isozyme and the cytosolic isozyme, respectively. The additional N-terminal 29 amino acids present in the mitochondrial isozyme precursor contains two putative cleavage sites based on the Arg-X-(Phe,Ile,Leu) motif. The predicted two-step processing would remove 14 of the 29 N-terminal amino acids. These 14 amino acids can be predicted to form a very strong amphipathic mitochondrial targeting signal. Their removal would yield a mature peptide of 43,680 mol. wt. The calculated mol. wts. based on the derived amino acid sequence are therefore in good agreement with previous estimates of an approximately 1.5–2-kDa difference between the Mrs of the mitochondrial and cytosolic isozymes. A model for the evolution of the mitochondrial targeting of glutamine synthetase in vertebrates is proposed. Correspondence to: J.W. CampbellThe nucleotide sequence reported will appear in GenBank under accession number U04617  相似文献   

10.
Cloning of a human tRNA isopentenyl transferase   总被引:2,自引:0,他引:2  
Golovko A  Hjälm G  Sitbon F  Nicander B 《Gene》2000,258(1-2):85-93
A cDNA of human origin is shown to encode a tRNA isopentenyl transferase (E.C. 2.5.1.8). Expression of the gene in a Saccharomyces cerevisiae mutant lacking the endogenous tRNA isopentenyl transferase MOD5 resulted in functional complementation and reintroduction of isopentenyladenosine into tRNA. The deduced amino acid sequence contains a number of regions conserved in known tRNA isopentenyl transferases. The similarity to the S. cerevisiae MOD5 protein is 53%, and to the Escherichia coli MiaA protein 47%. The human sequence was found to contain a single C2H2 Zn-finger-like motif, which was detected also in the MOD5 protein, and several putative tRNA transferases located by BLAST searches, but not in prokaryotic homologues.  相似文献   

11.
All mitochondrial tRNAs in Leishmania tarentolae are encoded in the nuclear genome and imported into the mitochondrion from the cytosol. One imported tRNA (tRNA(Trp)) is edited by a C to U modification at the first position of the anticodon. To determine the in vivo substrates for mitochondrial tRNA importation as well as tRNA editing, we examined the subcellular localization and extent of 5'- and 3'-end maturation of tRNA(Trp)(CCA), tRNA(Ile)(UAU), tRNA(Gln)(CUG), tRNA(Lys)(UUU), and tRNA(Val)(CAC). Nuclear, cytosolic, and mitochondrial fractions were obtained with little cross-contamination, as determined by Northern analysis of specific marker RNAs. tRNA(Gln) was mainly cytosolic in localization; tRNA(Ile) and tRNA(Lys) were mainly mitochondrial; and tRNA(Trp) and tRNA(Val) were shared between the two compartments. 5'- and 3'-extended precursors of all five tRNAs were present only in the nuclear fraction, suggesting that the mature tRNAs represent the in vivo substrates for importation into the mitochondrion. Consistent with this model, T7-transcribed mature tRNA(Ile) underwent importation in vitro into isolated mitochondria more efficiently than 5'-extended precursor tRNA(Ile). 5'-Extended precursor tRNA(Trp) was found to be unedited, which is consistent with a mitochondrial localization of this editing reaction. T7-transcribed unedited tRNA(Trp) was imported in vitro more efficiently than edited tRNA(Trp), suggesting the presence of importation determinants in the anticodon.  相似文献   

12.
13.
The yeast mitochondrial and cytosolic isoenzymes of fumarase, which are encoded by a single nuclear gene (FUM1), follow a unique mechanism of protein subcellular localization and distribution. Translation of all FUM1 messages initiates only from the 5'-proximal AUG codon and results in a single translation product that contains the targeting sequence located within the first 32 amino acids of the precursor. All fumarase molecules synthesized in the cell are processed by the mitochondrial matrix signal peptidase; nevertheless, most of the enzyme (80 to 90%) ends up in the cytosol. The translocation and processing of fumarase are cotranslational. We suggest that in Saccharomyces cerevisiae, the single type of initial translation product of the FUM1 gene is first partially translocated, and then a subset of these molecules continues to be fully translocated into the organelle, whereas the rest are folded into an import-incompetent state and are released by the retrograde movement of fumarase into the cytosol.  相似文献   

14.
To elucidate the role of modified nucleosides of tRNA in mitochondrial translation systems, especially with regard to their codon recognition, we purified mitochondrial tRNAs(Met) isolated from liver of frog, chicken and rat, and determined their nucleotide sequences. All of these tRNAs(Met) were found to possess 5-formylcytidine in the first letter of the anticodon, which is known to be prerequisite for bovine mt tRNA(Met) to decode AUA codon as well as AUG codon. These tRNA possesses two pseudeuridines in similar positions, and only chicken tRNA(Met) had ribothymidine at the first position of the T-loop, which is always found in the usual tRNAs. Considering that AUA codon is used as five times frequently as AUG codon in these animal mitochondrial genomes, it is deduced that 5-formylcytidine at the wobble position is essential for the recognition of both AUA and AUG codons.  相似文献   

15.
Aminoacyl-tRNA synthetases (AARSs) play a critical role in translation and are thus required in three plant protein-synthesizing compartments: cytosol, mitochondria and plastids. A systematic study had previously shown extensive sharing of organellar AARSs from Arabidopsis thaliana, mostly between mitochondria and chloroplasts. However, distribution of AARSs from monocot species, such as maize, has never been experimentally investigated. Here we demonstrate dual targeting of maize seryl-tRNA synthetase, SerZMo, into both mitochondria and chloroplasts using combination of complementary methods, including in vitro import assay, transient expression analysis of green fluorescent protein (GFP) fusions and immunodetection. We also show that SerZMo dual localization is established by the virtue of an ambiguous targeting peptide. Full-length SerZMo protein fused to GFP is targeted to chloroplast stromules, indicating that SerZMo protein performs its function in plastid stroma. The deletion mutant lacking N-terminal region of the ambiguous SerZMo targeting peptide was neither targeted into mitochondria nor chloroplasts, indicating the importance of this region in both mitochondrial and chloroplastic import.  相似文献   

16.
The causative agent of malaria, Plasmodium, possesses three translationally active compartments: the cytosol, the mitochondrion and a relic plastid called the apicoplast. Aminoacyl-tRNA synthetases to charge tRNA are thus required for all three compartments. However, the Plasmodiumfalciparum genome encodes too few tRNA synthetases to supply a unique enzyme for each amino acid in all three compartments. We have investigated the subcellular localisation of three tRNA synthetases (AlaRS, GlyRS and ThrRS), which occur only once in the nuclear genome, and we show that each of these enzymes is dually localised to the P. falciparum cytosol and the apicoplast. No mitochondrial fraction is apparent for these three enzymes, which suggests that the Plasmodium mitochondrion lacks at least these three tRNA synthetases. The unique Plasmodium ThrRS is the presumed target of the antimalarial compound borrelidin. Borrelidin kills P. falciparum parasites quickly without the delayed death effect typical of apicoplast translation inhibitors and without an observable effect on apicoplast morphology. By contrast, mupirocin, an inhibitor of the apicoplast IleRS, kills with a delayed death effect that inhibits apicoplast growth and division. Because inhibition of dual targeted tRNA synthetases should arrest translation in all compartments of the parasite, these enzymes deserve further investigation as potential targets for antimalarial drug development.  相似文献   

17.
18.
Glutaredoxins belong to a family of small proteins with glutathione-dependent disulfide oxidoreductase activity involved in cellular defense against oxidative stress. The product of the yeast GRX2 gene is a protein that is localized both in the cytosol and mitochondria. To throw light onto the mechanism responsible for the dual subcellular distribution of Grx2 we analyzed mutant constructs containing different targeting information. By altering amino acid residues around the two in-frame translation initiation start sites of the GRX2 gene, we could demonstrate that the cytosolic isoform of Grx2 was synthesized from the second AUG, lacking an N-terminal extension. Translation from the first AUG resulted in a long isoform carrying a mitochondrial targeting presequence. The mitochondrial targeting properties of the presequence and the influence of the mature part of Grx2 were analyzed by the characterization of the import kinetics of specific fusion proteins. Import of the mitochondrial isoform is relatively inefficient and results in the accumulation of a substantial amount of unprocessed form in the mitochondrial outer membrane. Substitution of Met(35), the second translation start site, to Val resulted in an exclusive targeting to the mitochondrial matrix. Our results show that a plethora of Grx2 subcellular localizations could spread its antioxidant functions all over the cell, but one single A to G [corrected] mutation converts Grx2 into a typical protein of the mitochondrial matrix. The "A" denotes adenine, rather than alanine, and the "G" refers to guanine, not glycine [corrected]  相似文献   

19.
The mitochondrial genome of Chlamydomonas reinhardtii only encodes three expressed tRNA genes, thus most mitochondrial tRNAs are likely imported. The sharing of tRNAs between chloroplasts and mitochondria has been speculated in this organism. We first demonstrate that no plastidial tRNA is present in mitochondria and that the mitochondrial translation mainly relies on the import of nucleus-encoded tRNA species. Then, using northern analysis, we show that the extent of mitochondrial localization for the 49 tRNA isoacceptor families encoded by the C. reinhardtii nuclear genome is highly variable. Until now the reasons for such variability were unknown. By comparing cytosolic and mitochondrial codon usage with the sub-cellular distribution of tRNAs, we provide unprecedented evidence that the steady-state level of a mitochondrial tRNA is linked not only to the frequency of the cognate codon in mitochondria but also to its frequency in the cytosol, then allowing optimal mitochondrial translation.  相似文献   

20.
Raza H 《The FEBS journal》2011,278(22):4243-4251
Glutathione (GSH) conjugating enzymes, glutathione S-transferases (GSTs), are present in different subcellular compartments including cytosol, mitochondria, endoplasmic reticulum, nucleus and plasma membrane. The regulation and function of GSTs have implications in cell growth, oxidative stress as well as disease progression and prevention. Of the several mitochondria localized forms, GSTK (GST kappa) is mitochondria-specific since it contains N-terminal canonical and cleavable mitochondria targeting signals. Other forms like GST alpha, mu and pi purified from mitochondria are similar to the cytosolic molecular forms or 'echoproteins'. Altered GST expression has been implicated in hepatic, cardiac and neurological diseases. Mitochondria-specific GSTK has also been implicated in obesity, diabetes and related metabolic disorders. Studies have shown that silencing the GSTA4 (GST alpha) gene resulted in mitochondrial dysfunction, as was also seen in GSTA4 null mice, which could contribute to insulin resistance in type 2 diabetes. This review highlights the significance of the mitochondrial GST pool, particularly the mechanism and significance of dual targeting of GSTA4-4 under in vitro and in vivo conditions. GSTA4-4 is targeted in the mitochondria by activation of the internal cryptic signal present at the C-terminus of the protein by protein-kinase-dependent phosphorylation and cytosolic heat shock protein (Hsp70) chaperone. Mitochondrial GST pi, on the other hand, has been shown to have two uncleaved cryptic signals rich in positively charged amino acids at the N-terminal region. Both physiological and pathophysiological implications of GST translocation to mitochondria are discussed in the review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号