首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an approach for the development of highly specific and sensitive antibody based biosensors by chemically tailoring the sensor surface with materials that control specific and nonspecific binding of biologically relevant molecules. As a model system we employed surface immobilized 2,4-dinitrophenyl (DNP)-ligands that bind specifically to anti-DNP antibodies. Self-assembling characteristics and minimization of the nonspecific interactions were used in the ligand design. The redox activity of the DNP-head group was used to calculate the surface density (coverage) of these assemblies using cyclic voltammetry. Quartz crystal microbalance (QCM) and impedance analysis were used to assess the ligand-antibody interaction and estimate the quantity of antibodies bound to the surface. The ligand surface density and the QCM data were useful in determining the sensitivity of our model system. A simple two-step kinetic model was shown to fit the experimental data.  相似文献   

2.
We report a novel method of electrochemical signaling from antigen-antibody interactions at immunoelectrodes with bioelectrocatalyzed enzymatic signal amplification. For the immunosensing surface construction, a poly(amidoamine) G4-dendrimer was employed not only as a building block for the electrode surface modification but also as a matrix for ligand functionalization. As a model biorecognition reaction, the dinitrophenyl (DNP) antigen-functionalized electrode was fabricated and an anti-DNP antibody was used. Glucose oxidase (GOX) was chosen to amplify electrochemical signal by enzymatic catalysis. The signal amplification strategy introduced in this study is based on the back-filling immobilization of biocatalytic enzyme to the immunosensor surface, circumventing the use of an enzyme-labeled antibody. The non-labeled native antibody was biospecifically bound to the immobilized ligand, and the activated enzyme (periodate-treated GOX) reacted and "back-filled" the remaining surface amine groups on the dendrimer layer by an imine formation reaction. From the bioelectrocatalyzed signal registration with the immobilized GOX, the surface density of biospecifically bound antibody could be estimated. The DNP functionalization reaction was optimized to facilitate the antibody recognition and signaling reactions, and approximately 6% displacement of surface amine to DNP was found to be an optimum. From quartz crystal microbalance measurement, immunosensing reaction timing and the surface inertness to the nonspecific biomolecular binding were tested. By changing the surface functionalization level of DNP in the calibration experiments, immunosensors exhibited different dynamic detection ranges and limits of detection, supporting the capability of parameters modulation for the immunosensors. For the anti-DNP antibody assay, the fabricated immunosensor having 65% functionalization ratio exhibited the linear detection range of 10(-4) to 0.1 g/L protein and a limit of detection around 2 x 10(-5) g/L.  相似文献   

3.
A method is described based on high-performance immunoaffinity chromatography for examining the interactions of immobilized antibodies or related binding agents with their targets. It is shown how this method can be used to obtain information on the binding, elution and regeneration kinetics of immobilized binding agents, such as those used with immunoaffinity supports. The theory behind this approach is briefly described and it is demonstrated how both the kinetic and thermodynamic properties of a biointeraction can be determined experimentally through this method. Several applications are used to illustrate this technique, including antibody-antigen interactions and the binding of aptamers with their targets in the presence of silica-based supports. The same approach can be adapted for use with other types of targets, binding agents and support materials.  相似文献   

4.
The combination of several drugs is necessary, especially during long-term therapy. A competitive binding of the drugs can cause a decrease in the amount of drugs actually bound to the protein and increase the biologically active fraction of the drug. Here, the interaction between 4,4′-Diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS) and 2,4-Dinitrophenol (DNP) with Hemoglobin (Hb) was investigated by different spectroscopic and molecular modeling techniques. Fluorescence analysis was used to estimate the effect of the DIDS and DNP on Hb as well as to define the binding properties of binary and ternary complexes. The distance r between donor and acceptor was obtained by the FRET and found to be 2.25 and 2.13 nm for DIDS and DNP in binary and 2.08 and 2.07 nm for (Hb–DNP) DIDS and (Hb–DIDS) DNP complexes in ternary systems, respectively. Time-resolved fluorescence spectroscopy confirmed static quenching for Hb in the presence of DIDS and DNP in both systems. Furthermore, an increase in ellipticity values of Hb upon interaction with DIDS and DNP showed secondary structural changes of protein that determine to disrupt of hydrogen bonds and electrostatic interactions. Our results showed that the Hb destabilize in the presence of DIDS and DNP. Molecular modeling of the possible binding sites of DIDS and DNP in binary and ternary systems in Hb confirmed the experimental results.  相似文献   

5.
Cross-linking of antibodies constitutes a widespread initiation signal for their respective effector functions. Cross-linking IgE-class antibodies provide the triggering signal to mast cells for their degranulation process. To obtain a quantitative insight into these cross-linking processes, the interactions between a DNP-specific monoclonal antibody of the IgE class and a series of divalent DNP haptens with spacers of different length and flexibility have been studied by fluorescence titration experiments. These were analyzed by employing the theoretical model developed by Dembo and Goldstein [Dembo, M., & Goldstein, B. (1978) J. Immunol. 121, 345-353] in a fitting procedure. Equilibrium constants that describe the aggregation and ring-closure processes caused by divalent hapten binding have been used as free parameters. The intrinsic binding constants were determined by fluorescence titrations with corresponding monovalent haptens. The main results are the following: (1) The divalent haptens with a short and flexible spacer [i.e., N alpha, N epsilon-di-(DNP)-L-lysine,meso-bis[(DNP-beta-Ala)amino]succinate, and bis[(DNP-tri-D-Ala)amino]heptane, having a maximal DNP-DNP distance of gamma = 14, 21, and 45 A, respectively] effect aggregation of the antibodies mainly into closed dimers. (2) The divalent hapten family with long and rigid oligoproline spacers di(DNP)-Ahx-Asp-(Pro)n-Lys with n = 24, 27, and 33 (i.e., gamma = 100, 110, and 130 A) causes aggregation of the antibodies predominantly into closed dimers and trimers. The corresponding equilibrium constants of the respective ring-closure processes decrease significantly with longer spacer length. (3) Evidence was found that intramolecularly monomeric ring closure of the IgE antibodies is caused by haptens containing oligoproline spacers with n = 37 or 42 (gamma = 130-150 A). The equilibrium constant of the ring-closure process increases with spacer length. This increase in stability indicates a difference in the imposed strain. Furthermore, the latter results imply that the distance between the two binding sites of the IgE molecule lies in the range dictated by the rigid oligoproline part of the respective hapten's spacer, i.e., 115-130 A. (4) Nearly all oligomeric ring-closure processes proceed relatively slowly with an approximate lower limit of a half-life of 5-10 s. This slowing down of the aggregation and ring-closure processes most probably reflects steric factors.  相似文献   

6.
We presented a novel surface plasmon resonance (SPR) imaging method for analysis of protein arrays based on a wavelength interrogation-based SPR biosensor. The spectral imaging was performed by the combination of position control and resonance wavelengths calculated from SPR reflectivity spectra. The imaging method was evaluated by analyzing interactions of glutathione S-transferase-fusion proteins with their antibodies. Antigen-antibody interactions were successfully analyzed on glutathione S-transferase-fusion protein arrays by using the spectral imaging method, and the results were confirmed by a parallel analysis using a previously used spectral SPR biosensor based on wavelength interrogation. Specific binding of anti-Rac1 and anti-RhoA to Rac1 and RhoA on the protein arrays was qualitatively and quantitatively analyzed by the spectral SPR imaging. Thus, it was suggested that the novel spectral SPR imaging was a useful tool for the high-throughput analysis of protein-protein interactions on protein arrays.  相似文献   

7.
Human cytomegalovirus (CMV) is a large enveloped virus that encodes multiple glycoproteins required for virus-cell binding and fusion. To assess the binding properties of antibodies with target glycoprotein in a natural context of infection, we investigated the feasibility of using the surface plasmon resonance (SPR) technique for studying the direct binding of antibodies with CMV virions. Direct immobilization of whole virions to sensor surface and a surface regeneration procedure allowed for quantitative and reproducible measurements of binding affinity and binding kinetics of antibody–whole virion interactions. The conformational and functional integrity of viral particles was not compromised by the regeneration condition as evaluated with antibodies recognizing conformational epitopes and by electron microscopy. Binding of an irrelevant antibody was not observed, indicating the high specificity of the method. A panel of anti-gB antibodies was measured and the binding affinities correlated fairly well with those determined by ELISA. These data demonstrated that the interaction of anti-gB antibody with whole virion of large enveloped CMV can be quantitatively studied using SPR. This method has been successfully applied for screening and selection of anti-CMV antibodies and can be potentially extended to study antibody–glycoprotein interactions of other related herpesviruses.  相似文献   

8.
It is demonstrated that isothermal titration calorimetry can be used to determine cooperative interaction energetics even for extremely tight binding processes in which the binding affinity constants are beyond the limits of experimental determination. The approach is based on the capability of calorimetry to measure the apparent binding enthalpy at any degree of ligand saturation. When calorimetric measurements are performed under conditions of total association at partial saturation, the dependence of the apparent binding enthalpy on the degree of saturation is a function only of the cooperative binding interactions. The method developed in this paper allows an independent estimation of cooperative energetic parameters without the need to simultaneously estimate or precisely know the value of the association constants. Since total ligand association at partial saturation is achieved only at macromolecular concentrations much larger than the dissociation constants, the method is especially suited for high and very high affinity processes. Biological associations in this category include fundamental cellular processes like cell surface receptor binding or protein-DNA interactions.  相似文献   

9.
Targeting of the epidermal growth factor receptor (EGFR) with monoclonal antibodies has become an established antitumor strategy in clinical use or in late stages of drug development. The mAbs effector mechanisms have been widely analyzed based on in vivo or cell studies. Hereby we intend to complement these functional studies by investigating the mAb-EGFR interactions on a molecular level. Surface plasmon resonance, isothermal titration calorimetry, and static light scattering were employed to characterize the interactions of matuzumab, cetuximab, and panitumumab with the extracellular soluble form ecEGFR. The kinetic and thermodynamic determinants dissected the differences in mAbs binding mechanism toward ecEGFR. The quantitative stoichiometric data clearly demonstrated the bivalent binding of the mAbs to two ecEGFR molecules. Our results complement earlier studies on simultaneous binding of cetuximab and matuzumab. The antibodies retain their bivalent binding mode achieving a 1:2:1 complex formation. Interestingly the binding parameters remain nearly constant for the individual antibodies in this ternary assembly. In contrast the binding of panitumumab is almost exclusive either by directly blocking the accessibility for the second antibody or by negative allosteric modulation. Overall we provide a comprehensive biophysical dataset on binding parameters, the complex assembly, and relative epitope accessibility for therapeutic anti-EGFR antibodies.  相似文献   

10.
Protein patterning has become an important topic as advances are made in biologically integrated devices and protein chip technology. Versatile and effective patterning requires substrates that can be quantified, with active presentation of proteins and control over protein density and orientation. Herein we describe a model system and the use of low-energy electron beam lithography to pattern molecular templates for immobilization of antibodies through ligand recognition. The templates were patterned over a background of poly(ethylene glycol) (PEG) modified silicon oxide (SiO x ). These substrates were exposed to a low-voltage (2 keV) electron beam to remove PEG selectively from exposed regions. These regions were then functionalized with a dinitrophenyl (DNP) ligand and tested for specific binding of fluorescently labeled anti-DNP antibodies. The PEG modified regions in conjunction with ligand-presenting regions in the patterned arrays substantially reduces non-specific adsorption of proteins, yielding a specific/nonspecific ratio of approx 10. The surface coverage of the biologically active DNP groups on SiO x and the amount of immobilized antibody on DNP were measured with a fluorescence-based, enzyme-linked immunosorbent assay. The specificity of the interaction between DNP ligand and fluorescently labeled anti-DNP antibodies was evaluated with fluorescence microscopy. This approach to patterning of molecular templates and assays for quantification are generally applicable to immobilization of any ligand-receptor pair on a wide range of substrates.  相似文献   

11.
A new ultra-filtration-Raman-difference (UFRD) method facilitates the tag-free screening and quantitation of protein-ligand binding constants. The method relies on drop-coating-deposition-Raman (DCDR) combined with ultrafiltration and difference spectroscopy. Ultrafiltration is used to remove free (unbound) ligands from pre-equilibrated protein/ligand solutions. Difference DCDR spectroscopy is used to detect binding-induced vibrational spectral changes obtained from proteins with and without a bound ligand. The capabilities of the UFRD method are demonstrated using the binding of 2,4-dinitrophenol (DNP) to transthyretin (TTR), as well as preliminary measurements in several other systems. The UFRD results clearly reveal DNP spectral features induced by binding to TTR and confirm that only a 1:1 complex is formed even under 10-fold excess DNP conditions. The UFRD method is shown to be most useful when applied to strongly Raman active ligands (such as aromatic compounds). Weakly Raman-active ligands (such as sugars) are typically not compatible with UFRD detection (unless they produce a sufficiently large binding-induced change in protein secondary structure). Theoretical predictions suggest that UFRD may be used to screen binding events with a dissociation constant cut-off of the order of 10 microM, and perhaps also to quantify dissociation constants in the 100 nM to 100 microM range.  相似文献   

12.
We have developed a sensitive method for the detection of recombinant antibody-antigen interactions in a microarray format. The biochip sensor platform used in this study is based on an oriented streptavidin monolayer that provides a biological interface with well-defined surface architecture that dramatically reduces nonspecific binding interactions. All the antibody or antigen probes were biotinylated and coupled onto streptavidin-coated biochip surfaces (1 microL total volume). The detection limits for the immobilized probes on the microarray surface were 0.5 microgram/mL (200 fmol/spot) for the peptide antigen and 0.1 microgram/mL (3 fmol/spot) for the recombinant antibodies. Optimal concentrations for the detection of the Cy5-labeled protein target were in the range of 20 micrograms/mL. Protein microchips were used to measure antibody-antigen kinetics, to find optimal temperature conditions, and to establish the shelf life of recombinant antibodies immobilized on the streptavidin surface. For recombinant antibody fragments with a kDa of 10-100 nM, we have established an easy and direct immunoassay. In addition, we developed an indirect method for antibody detection with no need for expensive and time-consuming antibody purifications and modifications. Such a method was shown to be useful for large-scale screening of recombinant antibody fragments directly after their functional expression in bacteria. Our data demonstrate that recombinant antibody fragments are suitable components in the construction of antibody chips.  相似文献   

13.
Aggregation of cell surface receptors by multivalent ligand can trigger a variety of cellular responses. A well-studied receptor that responds to aggregation is the high affinity receptor for IgE (FcepsilonRI), which is responsible for initiating allergic reactions. To quantify antigen-induced aggregation of IgE-FcepsilonRI complexes, we have developed a method based on multiparameter flow cytometry to monitor both occupancy of surface IgE combining sites and association of antigen with the cell surface. The number of bound IgE combining sites in excess of the number of bound antigens, the number of bridges between receptors, provides a quantitative measure of IgE-FcepsilonRI aggregation. We demonstrate our method by using it to study the equilibrium binding of a haptenated fluorescent protein, 2,4-dinitrophenol-coupled B-phycoerythrin (DNP25-PE), to fluorescein isothiocyanate-labeled anti-DNP IgE on the surface of rat basophilic leukemia cells. The results, which we analyze with the aid of a mathematical model, indicate how IgE-FcepsilonRI aggregation depends on the total concentrations of DNP25-PE and surface IgE. As expected, we find that maximal aggregation occurs at an optimal antigen concentration. We also find that aggregation varies qualitatively with the total concentration of surface IgE as predicted by an earlier theoretical analysis.  相似文献   

14.
Development of immunobiosensor detector surfaces involves the immobilization of active antibodies on the capture surface without any significant loss of antigen binding activity. An atomic force microscope (AFM) was used to directly evaluate specific interactions between pesticides and antibodies on a biosensor surface. Oriented immobilization of antibodies against two herbicide molecules 2,4-dichlorophenoxyacetic acid (2,4-D) and atrazine, on gold, was carried out to create the active immunobiosensor surfaces. The adhesive forces between immobilized antibodies and their respective antigens were measured by force spectroscopy using hapten-carrier protein functionalized AFM cantilevers. Relative functional affinity (avidity) measurements of the antibodies carried out prior to immobilization, well correlated with subsequent AFM force measurement observations. Analysis showed that immobilization had not compromised the reactivity of the surface immobilized antibody molecules for antigen nor was there any change in their relative quality with respect to each other. The utility of the immunoreactive surface was further confirmed using a Surface Plasmon Resonance (SPR) based detection system. Our study indicates that AFM can be utilized as a convenient immunobiosensing tool for confirming the presence and also assessing the strength of antibody-hapten interactions on biosensor surfaces under development.  相似文献   

15.
Summary The weak acid 2,4-dinitrophenol (DNP) acts as an uncoupler of oxidative phosphorylation in biological systems and, in consonance with the Mitchell hypothesis, also enhances the conductance of phospholipid bilayer membranes. Several models have been proposed in the literature to explain the molecular mechanism by which DNP exerts its electrical effects on the model membranes, none of which accounts for all of the data, and all of which ignore the possibility that the anion of DNP is also binding to the surface of the bilayer and modifying the charge density. Experimental evidence is presented in this report which suggests that when a bilayer membrane is formed from a neutral lipid, DNP does in fact adsorb to its surface and produce a substantial negative surface potential. When this phenomenon is taken into account, the model proposed by Lea and Croghan and by Finkelstein is capable of describing all of the effects of DNP on bilayer membranes. In this model, the permeant species is a negatively charged complex formed from the undissociated acid and its anion.  相似文献   

16.
The solubility parameters of TNAD, HMX, RDX, DINA, DNP propellants were predicted by molecular dynamics (MD) simulation in order to evaluate the miscibility of TNAD and the other four propellants. The results show that the order of miscibility is TNAD/DINA > TNAD/DNP > TNAD/RDX > TNAD/HMX from the analysis of miscibility. The densities and binding energies of TNAD/propellants blends were further investigated. The results indicate that the better the miscibility between TNAD and the propellants, the smaller the variation of the density rate. The larger the intermolecular interaction, the better the miscibility between components. The analysis of radial distribution function shows that the main interaction ways between TNAD and other energetic components are short-range interactions.
Figure
Based on molecular dynamics (MD) simulation, the binding energy, density, radial distribution function of TNAD/propellants blends were computed in order to evaluate the miscibility of TNAD and some propellants. The results show that the density change rate, binding energy and radial distribution function of TNAD/ propellants blends are generally consistent with the experimental results. The solubility parameters of TNAD, HMX, RDX, DINA, DNP propellants were also predicted by the MD simulations. The results show that the order of miscibility is TNAD/DINA > TNAD/DNP > TNAD/RDX > TNAD/HMX from the analysis of miscibility.  相似文献   

17.
We report the effects of ligand presentation on the binding of aqueous proteins to solid supported lipid bilayers. Specifically, we show that the equilibrium dissociation constant can be strongly affected by ligand lipophilicity and linker length/structure. The apparent equilibrium dissociation constants (KD) were compared for two model systems, biotin/anti-biotin and 2,4-dinitrophenyl (DNP)/anti-DNP, in bulk solution and at model membrane surfaces. The binding constants in solution were obtained from fluorescence anisotropy measurements. The surface binding constants were determined by microfluidic techniques in conjunction with total internal reflection fluorescence microscopy. The results showed that the bulk solution equilibrium dissociation constants for anti-biotin and anti-DNP were almost identical, KD(bulk) = 1.7 ± 0.2 nM vs. 2.9 ± 0.1 nM. By contrast, the dissociation constant for anti-biotin antibody was three orders of magnitude tighter than for anti-DNP at a lipid membrane interface, KD = 3.6 ± 1.1 nM vs. 2.0 ± 0.2 μM. We postulate that the pronounced difference in surface binding constants for these two similar antibodies is due to differences in the ligands’ relative lipophilicity, i.e., the more hydrophobic DNP molecules had a stronger interaction with the lipid bilayers, rendering them less available to incoming anti-DNP antibodies compared with the biotin/anti-biotin system. However, when membrane-bound biotin ligands were well screened by a poly(ethylene glycol) (PEG) polymer brush, the KD value for the anti-biotin antibody could also be weakened by three orders of magnitude, 2.4 ± 1.1 μM. On the other hand, the dissociation constant for anti-DNP antibodies at a lipid interface could be significantly enhanced when DNP haptens were tethered to the end of very long hydrophilic PEG lipopolymers (KD = 21 ± 10 nM) rather than presented on short lipid-conjugated tethers. These results demonstrate that ligand presentation strongly influences protein interactions with membrane-bound ligands.  相似文献   

18.
Methods of myoglobin determination based on electrochemical analysis by means of analysis of electrochemical parameters of modified electrodes have been proposed. The method of direct detection is based on interaction of myoglobin with anti-myoglobin with subsequent electrochemical registration of this hemoprotein. The electrode surface was modified by a membrane-like synthetic didodecyldimethylammonium bromide (DDAB), gold nanoparticles and antibodies to human cardiac myoglobin the electrochemical reduction of myoglobin heme was registered provided that the antigen (myoglobin) was present in the samples. The reaction of myoglobin binding to antibodies immobilized on the electrode surface was also registered using electrochemical impedance spectroscopy. The study of electro analytical characteristics revealed high specificity and sensitivity of the developed method. The biosensor was characterized by low detection limit and a high working range of the detected concentrations from 17.8 to 1780 ng/ml (from 1 to 100 nM). The method of myoglobin determination based on a signal of gold nanoparticles has also been proposed. The signal was detected with stripping voltammetry. There was a change in the cathodic peak area and the peak height of gold oxide reduction for the electrodes with antibodies and the electrodes with the antibody-myoglobin complex.  相似文献   

19.
A new method based on Taylor dispersion has been developed that enables an analyte gradient to be titrated over a ligand-coated surface for kinetic/affinity analysis of interactions from a minimal number of injections. Taylor dispersion injections generate concentration ranges in excess of four orders of magnitude and enable the analyte diffusion coefficient to be reliably estimated as a fitted parameter when fitting binding interaction models. A numerical model based on finite element analysis, Monte Carlo simulations, and statistical profiling were used to compare the Taylor dispersion method with standard fixed concentration injections in terms of parameter correlation, linearity of parameter error space, and global versus local model fitting. A dramatic decrease in parameter correlations was observed for TDi curves relative to curves from standard fixed concentration injections when surface saturation was achieved. In FCI the binding progress is recorded with respect to injection time, whereas in TDi the second time dependency encoded in the analyte gradient increases resolving power. This greatly lowers the dependence of all parameters on each other and on experimental interferences. When model parameters were fitted locally, the performance of TDis remained comparable to global model fitting, whereas fixed concentration binding response curves yielded unreliable parameter estimates.  相似文献   

20.
Proteins are renowned for their specificity of function. There is, however, accumulating evidence that many proteins, from enzymes to antibodies, are functionally promiscuous. Promiscuity is of considerable physiological importance. In the immune system, cross‐reactive or multispecific antibodies are implicated in autoimmune and allergy conditions. In most cases, however, the mechanism behind promiscuity and the relationship between specific and promiscuous activities are unknown. Are the two contradictory? Or can a protein exhibit several unrelated activities each of which is highly specific? To address these questions, we studied a multispecific IgE antibody (SPE7) elicited against a 2,4‐dinitrophenyl hapten (DNP). SPE7 is able to distinguish between closely related derivatives such as NP (nitrophenol) and DNP, yet it can also bind a number of unrelated ligands. We find that, like DNP, the cross‐reactants are themselves bound specifically—close derivatives of these cross‐reactants show very low or no binding to SPE7. It has been suggested that cross‐reactivity is simply due to “hydrophobic stickiness”, nonspecific interactions between hydrophobic ligands and binding sites. However, partitioning experiments reveal that affinity for SPE7 is unrelated to ligand hydrophobicity. These data, combined with crystal structures of SPE7 in complex with four different ligands, demonstrate that each cross‐reactant is bound specifically, forming different hydrogen bonds dependant upon its particular chemistry and the availability of complementary antibody residues. SPE7 is highly homologous to the germline antinitrophenol (NP) antibody B1–8. By comparing the sequences and binding patterns of SPE7 and B1–8, we address the relationship between affinity maturation, specificity, and cross‐reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号