首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The positively charged lysine residue plays an important role in protein folding and functions. Neutralization of the charge often has a profound impact on the substrate proteins. Accordingly all the known post-translational modifications at lysine have pivotal roles in cell physiology and pathology. Here we report the discovery of two novel, in vivo lysine modifications in histones, lysine propionylation and butyrylation. We confirmed, by in vitro labeling and peptide mapping by mass spectrometry, that two previously known acetyltransferases, p300 and CREB-binding protein, could catalyze lysine propionylation and lysine butyrylation in histones. Finally p300 and CREB-binding protein could carry out autopropionylation and autobutyrylation in vitro. Taken together, our results conclusively establish that lysine propionylation and lysine butyrylation are novel post-translational modifications. Given the unique roles of propionyl-CoA and butyryl-CoA in energy metabolism and the significant structural changes induced by the modifications, the two modifications are likely to have important but distinct functions in the regulation of biological processes.  相似文献   

4.
Histone proteins and their accompanying post-translational modifications have received much attention for their ability to affect chromatin structure and, hence, regulate gene expression. Recently, mass spectrometry has become an important complementary tool for the analysis of histone variants and modification sites, for determining the degree of occupancy of these modifications and for quantifying differential expression of these modifications from various samples. Additionally, as advancements in mass spectrometry technologies continue, the ability to read entire 'histone codes' across large regions of histone polypeptides or intact protein is possible. As chromatin biology demands, mass spectrometry has adapted and continues as a key technology for the analysis of gene regulation networks involving histone modifications.  相似文献   

5.
Full-length masses of histones were analyzed by mass spectrometry to characterize post-translational modifications of bulk histones and their changes induced by cell stimulation. By matching masses of unique peptides with full-length masses, H4 and the variants H2A.1, H2B.1, and H3.1 were identified as the main histone forms in K562 cells. Mass changes caused by covalent modifications were measured in a dose- and time-dependent manner following inhibition of phosphatases by okadaic acid. Histones H2A, H3, and H4 underwent changes in mass consistent with altered acetylation and phosphorylation, whereas H2B mass was largely unchanged. Unexpectedly, histone H4 became almost completely deacetylated in a dose-dependent manner that occurred independently of phosphorylation. Okadaic acid also partially blocked H4 hyperacetylation induced by trichostatin-A, suggesting that the mechanism of deacetylation involves inhibition of H4 acetyltransferase activity, following perturbation of cellular phosphatases. In addition, mass changes in H3 in response to okadaic acid were consistent with phosphorylation of methylated, acetylated, and phosphorylated forms. Finally, kinetic differences were observed with respect to the rate of phosphorylation of H2A versus H4, suggesting differential regulation of phosphorylation at sites on these proteins, which are highly related by sequence. These results provide novel evidence that global covalent modifications of chromatin-bound histones are regulated through phosphorylation-dependent mechanisms.  相似文献   

6.
7.
Due to the intimate interactions between histones and DNA, the characterization of histones has become the focus of great attention. A series of mass spectrometry-based technologies have been dedicated to the characterization and quantitation of different histone forms. This review focuses on the discussion of mass spectrometry-based strategies used for the characterization of histones and their post-translational modifications.  相似文献   

8.
Due to the intimate interactions between histones and DNA, the characterization of histones has become the focus of great attention. A series of mass spectrometry-based technologies have been dedicated to the characterization and quantitation of different histone forms. This review focuses on the discussion of mass spectrometry-based strategies used for the characterization of histones and their post-translational modifications.  相似文献   

9.
Histone linker proteins H1 and H5 were purified from chicken erythrocyte cell nuclei under nondenaturing conditions. The purified linker histones were analyzed using in-solution enzymatic digestions followed by nanoflow reverse-phase high-performance liquid chromatography tandem mass spectrometry. We have identified all six major isoforms of the chicken histone H1 (H101, H102, H103, H110, H11R and H11L) and, in addition, the specialist avian isoform H5. In all the histone variants, both the acetylated and nonacetylated N (alpha)-terminal peptides were identified. Mass spectrometry analysis also enabled the identification of a wide range of post-translational modifications including acetylation, methylation, phosphorylation and deamidation. Furthermore, a number of amino acids were identified that were modified with both acetylation and methylation. These results highlight the extensive modifications that are present on the linker histone proteins, indicating that, similar to the core histones, post-translational modifications of the linker histones may play a role in chromatin remodelling and gene regulation.  相似文献   

10.
Histone post-translational modifications mark distinct structural and functional chromatin states but little is known of their involvement in the progression of different cell cycle types across phylogeny. We compared temporal and spatial dynamics of histone H4 post-translational modifications during both mitotic and endoreduplicative cycles of the urochordate, Oikopleura dioica, and proliferating mammalian cells. Endocycling cells showed no signs of chromosome condensation or entry into mitosis. They exhibited an evolution of replication patterns indicative of reduced chromatin compartmentalization relative to proliferating mammalian cells. In the latter cells, published cell cycle profiles of histone H4 acetylated at lysine 16 (H4AcK16) or dimethylated at lysine 20 (H4Me2K20) are disputed. Our results, using different, widely used H4AcK16 antibodies, revealed significant antibody-specific discrepancies in spatial and temporal cell cycle regulation of this modification, with repercussions for interpretation of previous immunofluorescence and immunoprecipitation data based on these reagents. On the other hand, three different antibodies to H4Me2K20 revealed similar cell cycle profiles of this modification that were conserved throughout the mitotic cell cycle in urochordate and mammalian cells, with accumulation at mitosis and a decrease during S-phase. H4Me2K20 also cycled in endocycles, indicating that dynamics of this modification are not strictly constrained by the mitotic phase of the cell cycle and suggesting additional roles during G- and S-phase progression. This article contains Supplementary Material available at http://www.mrw.interscience.wiley.com/suppmat/0730-2312/suppmat/2005/95/spada.html.  相似文献   

11.

Background  

Histone modifications and histone variants are of importance in many biological processes. To understand the biological functions of the global dynamics of histone modifications and histone variants in higher plants, we elucidated the variants and post-translational modifications of histones in soybean, a legume plant with a much bigger genome than that of Arabidopsis thaliana.  相似文献   

12.

Background

Functional genomics tools provide researchers with the ability to apply high-throughput techniques to determine the function and interaction of a diverse range of genes. Mutagenised plant populations are one such resource that facilitate gene characterisation. They allow complex physiological responses to be correlated with the expression of single genes in planta, through either reverse genetics where target genes are mutagenised to assay the affect, or through forward genetics where populations of mutant lines are screened to identify those whose phenotype diverges from wild type for a particular trait. One limitation of these types of populations is the prevalence of gene redundancy within plant genomes, which can mask the affect of individual genes. Activation or enhancer populations, which not only provide knock-out but also dominant activation mutations, can facilitate the study of such genes.

Results

We have developed a population of almost 50,000 activation tagged A. thaliana lines that have been archived as individual lines to the T3 generation. The population is an excellent tool for both reverse and forward genetic screens and has been used successfully to identify a number of novel mutants. Insertion site sequences have been generated and mapped for 15,507 lines to enable further application of the population, while providing a clear distribution of T-DNA insertions across the genome. The population is being screened for a number of biochemical and developmental phenotypes, provisional data identifying novel alleles and genes controlling steps in proanthocyanidin biosynthesis and trichome development is presented.

Conclusion

This publicly available population provides an additional tool for plant researcher's to assist with determining gene function for the many as yet uncharacterised genes annotated within the Arabidopsis genome sequence http://aafc-aac.usask.ca/FST. The presence of enhancer elements on the inserted T-DNA molecule allows both knock-out and dominant activation phenotypes to be identified for traits of interest.  相似文献   

13.
14.
15.
Mass spectrometry (MS)-based characterization is important in proteomic research for verification of structural features and functional understanding of gene expression. Post-translational modifications (PTMs) such as methylation and acetylation have been reported to be associated with chromatin remodeling during spermatogenesis. Although antibody- and MS-based approaches have been applied for characterization of PTMs on H3 variants during spermatogenesis, variant-specific PTMs are still underexplored. We identified several lysine modifications in H3 variants, including testis-specific histone H3 (H3t), through their successful separation with MS-based strategy, based on differences in masses, retention times, and presence of immonium ions. Besides methylation and acetylation, we detected formylation as a novel PTM on H3 variants in mouse testes. These patterns were also observed in H3t. Our data provide high-throughput structural information about PTMs on H3 variants in mouse testes and show possible applications of this strategy in future proteomic studies on histone PTMs.  相似文献   

16.
This study investigates the use of immonium ion scanning for the discovery of methylated and acetylated peptides. Tandem mass spectrometry of modified and unmodified versions of identical peptides revealed ions of 98, 112 and 126 m/ z specifically in association with mono-, dimethylated and acetylated lysine, respectively. Ions of 143 m/ z were seen to be associated with monomethylated arginine, although were not unique to this amino acid. Use of immonium ion scanning with differing collision energies (35, 55, 75, 95, 115 eV) showed that where immonium ions are strong and unique for a modified amino acid, the discovery rate of modified peptides can be improved up to 4-fold over control analyses. The position of an amino acid in a peptide, being terminal or internal, also affected the efficiency of identification of modified peptides. Higher collision energy scanning was required for the most effective identification of peptides with internal modified residues. We conclude that immonium ion scanning, particularly with a range of collision energies, can improve the discovery efficiency of post-translational modifications in peptides.  相似文献   

17.
18.
Much progress has been made concerning histone function in the nucleus; however, following their synthesis, how their marking and subcellular trafficking are regulated remains to be explored. To gain an insight into these issues, we focused on soluble histones and analyzed endogenous and tagged H3 histones in parallel. We distinguished six complexes that we could place to account for maturation events occurring on histones H3 and H4 from their synthesis onward. In each complex, a different set of chaperones is involved, and we found specific post-translational modifications. Interestingly, we revealed that histones H3 and H4 are transiently poly(ADP-ribosylated). The impact of these marks in histone metabolism proved to be important as we found that acetylation of lysines 5 and 12 on histone H4 stimulated its nuclear translocation. Furthermore, we showed that, depending on particular histone H3 modifications, the balance in the presence of the different translocation complexes changes. Therefore, our results enabled us to propose a regulatory means of these marks for controlling cytoplasmic/nuclear shuttling and the establishment of early modification patterns.  相似文献   

19.
The N-terminal tails of the four core histones are subject to several types of covalent post-translational modifications that have specific roles in regulating chromatin structure and function. Here we present an extensive analysis of the core histone modifications occurring through the cell cycle. Our MS experiments characterized the modification patterns of histones from HeLa cells arrested in phase G1, S, and G2/M. For all core histones, the modifications in the G1 and S phases were largely identical but drastically different during mitosis. Modification changes between S and G2/M phases were quantified using the SILAC (stable isotope labeling by amino acids in cell culture) approach. Most striking was the mitotic phosphorylation on histone H3 and H4, whereas phosphorylation on H2A was constant during the cell cycle. A loss of acetylation was observed on all histones in G2/M-arrested cells. The pattern of cycle-dependent methylation was more complex: during G2/M, H3 Lys27 and Lys36 were decreased, whereas H4 Lys20 was increased. Our results show that mitosis was the period of the cell cycle during which many modifications exhibit dynamic changes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号