首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A method for routine preparation of cell fractions from rat brain is described. A suspension of undamaged cells was obtained by means of a combined enzymatic and mechanical procedure. The cell yield was about 25% of brain DNA.  相似文献   

2.
3.
DNA synthesis in the developing rat brain   总被引:4,自引:0,他引:4  
  相似文献   

4.
The distribution of angiotensinogen containing cells was determined in the brain of rats using immunocytochemistry. Specific angiotensinogen immunoreactivity is demonstrated both in glial cells and neurons throughout the brain, except the neocortical and cerebellar territories. Positive neurons are easily and invariably detected in female brains, and haphazardly in male brain (sex hormone dependent). Angiotensinogen immunoreactivity in male brain neurons can be induced by water deprivation or binephrectomy in some areas and particularly in paraventricular nuclei. Finally, the highest concentrations of positive neurons are found in the anterior and lateral hypothalamus, preoptic area, amygdala and some well known nuclei of the mesencephalon and the brainstem. Our results confirm the wide distribution of angiotensinogen mRNA in the brain reported recently by Lynch et al. (1987). Thus the demonstration of angiotensinogen in neurons and glial cells allows a greater understanding of the biochemical and physiological data in accordance with multiple brain renin angiotensin systems.  相似文献   

5.
B Banerjee  S Chaudhury 《Life sciences》2001,69(20):2409-2417
The developmental profile of the different isoforms of NaKATPase have been investigated during the first three weeks of postnatal development using primary cultures of isolated glial cells derived from neonatal rat cerebra. Northern and Western blot analysis show that the expression of four isoforms (alpha1, alpha2, beta1 and beta2) in these cells increases progressively between 5 to 20 days of culture. Comparison of the mRNA levels of these isoforms in thyroid hormone deficient (TH def) and thyroid hormone supplemented (TH sup) cells cultured for 5-10 days, revealed for the first time that all four isoforms are sensitive to T3 in the glial cells. Furthermore immunocytochemical staining of these cells with isoform specific NaKATPase antibodies also showed that the localization of the different isoforms in the TH def cells were altered in comparison to that in the TH sup cells. These results establish glial cells as the target cells for the regulation of NaKATPase by TH in the developing brain.  相似文献   

6.
The levels of cAMP-dependent protein kinases were measured in developing rat brain by a variety of methods. The regulatory subunit (R) was measured both by [3H]cAMP binding and by 8-N3-[32P]cAMP incorporation. The catalytic subunit (C) was measured by an assay of histone kinase activity. Data were calculated per mg protein. Neither R nor C levels changed significantly in either membranes or cytosol during development. The ratio of R to C was essentially unity in the cerebra of both newborn (2-day-old) and adult (40-day-old) rats. Polyacrylamide-gel electrophoresis resolved two regulatory subunits (R-I) and (R-II) which were derived from the Type I and Type II cAMP-dependent protein kinases, respectively. 8-N3-[32P]cAMP incorporation into Proteins R-I and R-II indicated that the amounts of Proteins R-I and R-II did not change significantly in either membranes or cytosol during development.  相似文献   

7.
Inoculation of the neonatal rat with lymphocytic choriomeningitis virus (LCMV) results in the selective infection of several neuronal populations and in focal pathological changes. However, the pathway by which LCMV reaches the susceptible neurons has not been described, and the nature and time course of the pathological changes induced by the infection are largely unknown. This study examined the sequential migration of LCMV in the developing rat brain and compared the pathological changes among infected brain regions. The results demonstrate that astrocytes and Bergmann glia cells are the first cells of the brain parenchyma infected with LCMV and that the virus spreads across the brain principally via contiguous glial cells. The virus then spreads from glial cells into neurons. However, not all neurons are susceptible to infection. LCMV infects neurons in only four specific brain regions: the cerebellum, olfactory bulb, dentate gyrus, and periventricular region. The virus is then cleared from glial cells but persists in neurons. LCMV induces markedly different pathological changes in each of the four infected regions. The cerebellum undergoes an acute and permanent destruction, while the olfactory bulb is acutely hypoplastic but recovers fully with age. Neurons of the dentate gyrus are unaffected in the acute phase but undergo a delayed-onset mortality. In contrast, the periventricular region has neither acute nor late-onset cell loss. Thus, LCMV infects four specific brain regions in the developing brain by spreading from glial cells to neurons and then induces substantially different pathological changes with diverse time courses in each of the four infected regions.  相似文献   

8.
9.
To avoid the possibility of blood contamination and of gene rearrangement during library construction we isolated total RNA directly from cultured rat embryonic neuronal cells and glioma C6 cells to be used as template for RT-PCR. By using specific primers for both membrane-bound b5 and soluble b5, DNA bands of appropriate size were clearly amplified indicating that both neurons and glial cells expressed b5s, although soluble b5 seemed to be less expressed in these cells. Nucleotide sequence of the internal exon for soluble b5 was reinvestigated and confirmed to be 58 bp containing genetic codons for His-Ser-Ala-Leu and stop.  相似文献   

10.
11.
The relationship between neuronal glutamate turnover, the glutamate/glutamine cycle and de novo glutamate synthesis was examined using two different model systems, freshly dissected rat retinas ex vivo and in vivo perfused rat brains. In the ex vivo rat retina, dual kinetic control of de novo glutamate synthesis by pyruvate carboxylation and transamination of alpha-ketoglutarate to glutamate was demonstrated. Rate limitation at the transaminase step is likely imposed by the limited supply of amino acids which provide the alpha-amino group to glutamate. Measurements of synthesis of (14)C-glutamate and of (14)C-glutamine from H(14)CO(3) have shown that (14)C-amino acid synthesis increased 70% by raising medium pyruvate from 0.2 to 5 mM. The specific radioactivity of (14)C-glutamine indicated that approximately 30% of glutamine was derived from (14)CO(2) fixation. Using gabapentin, an inhibitor of the cytosolic branched-chain aminotransferase, synthesis of (14)C-glutamate and (14)C-glutamine from H(14)CO(3)(-) was inhibited by 31%. These results suggest that transamination of alpha-ketoglutarate to glutamate in Müller cells is slow, the supply of branched-chain amino acids may limit flux, and that branched-chain amino acids are an obligatory source of the nitrogen required for optimal rates of de novo glutamate synthesis. Kinetic analysis suggests that the glutamate/glutamine cycle accounts for 15% of total neuronal glutamate turnover in the ex vivo retina. To examine the contribution of the glutamate/glutamine cycle to glutamate turnover in the whole brain in vivo, rats were infused intravenously with H(14)CO(3)(-). (14)C-metabolites in brain extracts were measured to determine net incorporation of (14)CO(2) and specific radioactivity of glutamate and glutamine. The results indicate that 23% of glutamine in the brain in vivo is derived from (14)CO(2) fixation. Using published values for whole brain neuronal glutamate turnover, we calculated that the glutamate/glutamine cycle accounts for approximately 60% of total neuronal turnover. Finally, differences between glutamine/glutamate cycle rates in these two model systems suggest that the cycle is closely linked to neuronal activity.  相似文献   

12.
13.
McMahon  S.S.  McDermott  K.W. 《Brain Cell Biology》2001,30(9-10):821-828
The mechanisms that control the production and differentiation of glial cells during development are difficult to unravel because of displacement of precursor cells from their sites of origin to their permanent location. The two main neuroglial cells in the rat spinal cord are oligodendrocytes and astrocytes. Considerable evidence supports the view that oligodendrocytes in the spinal cord are derived from a region of the ventral ventricular zone (VZ). Some astrocytes, at least, may arise from radial glia. In this study a 5-Bromo-2′-deoxyuridine (BrdU) incorporation assay was used to identify proliferating cells and examine the location of proliferating glial precursor cells in the embryonic spinal cord at different times post BrdU incorporation. In this way the migration of proliferating cells into spinal cord white matter could be followed. At E14, most of the proliferating cells in the periventricular region were located dorsally and these cells were probably proliferating neuronal precursors. At E16 and E18, the majority of the proliferating cells in the periventricular region were located ventrally. In the white matter the number of proliferating cells increased as the animals increased in age and much of this proliferation occurred locally. BrdU labelling showed that glial precursor cells migrate from their ventral and dorsal VZ birth sites to peripheral regions of the cord. Furthermore although the majority of proliferating cells in the spinal cord at E16 and E18 were located in the ventral periventricular region, some proliferating cells remained in the dorsal VZ region of the cord.  相似文献   

14.
15.
16.
Neonatal undernutrition and RNA synthesis in developing rat brain   总被引:1,自引:1,他引:0  
—Underfeeding of newborn rats results in a decreased body and brain weight at 10, 20 and 30 days of age. The DNA and RNA content of the brain in these animals are similar to those of normal controls. The in vivo and in vitro synthesis of RNA in brain is significantly decreased in undernourished rats at 10 days of age when compared with controls. The metabolic transformation of 3H-orotic acid to nucleotides is also diminished. A short period of food rehabilitation produces -an improvement in the above mentioned alterations. However, a reduced incorporation of label into microsomal RNA persists even in the last condition. The results suggest that malnutrition, during the first days of life, alters the metabolism of cerebral RNA.  相似文献   

17.
18.
Protein synthesis systems from rat brain   总被引:4,自引:0,他引:4  
  相似文献   

19.
We have isolated two colcemid-resistant mutant sublines, CMR (7A) and CMR (7B), from rat glial cells, C6, using multiple consecutive selections with increasing concentrations of colcemid. The mutant sublines show a decreased uptake of [3H]colchicine but have no apparent defect in the cytoplasmic binding of the drug. The synthesis of the brain-specific S100 protein is less sensitive to colcemid inhibition in the mutant cell lines than in parental C6 cells, suggesting that colcemid must enter the cell to inhibit S100 protein synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号