首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a gasoline substitute, butanol has advantages over traditional fuel ethanol in terms of energy density and hydroscopicity. However, solvent production appeared limited by butanol toxicity. The strain of Clostridium acetobutylicum was subjected to mutation by mutagen of N-methyl-N'-nitro-N-nitrosoguanidine for 0.5?h. Screening of mutants was done according to the individual resistance to butanol. A selected butanol-resistant mutant, strain 206, produced 50?% higher solvent concentrations than the wild-type strain when 60?g glucose/l was employed as substrate. The strain was also able to produce solvents of 23.47?g/l in 80?g/l glucose P2 medium after 70?h fermentation, including 5.41?g acetone/l, 15.05?g butanol/l and 3.02?g ethanol/l, resulting in an ABE yield and productivity of 0.32?g/g and 0.34?g/(l?h). Subsequently, Acetone-butanol-ethanol (ABE) production from enzymatic hydrolysate of NaOH-pretreated corn stover was investigated in this study. An ABE yield of 0.41 and a productivity of 0.21?g/(l?h) was obtained, compared to the yield of 0.33 and the productivity of 0.20?g/(l?h) in the control medium containing 52.47 mixed sugars. However, it is important to note that although strain 206 was able to utilize all the glucose rapidly in the hydrolysate, only 32.9?% xylose in the hydrolysate was used after fermentation stopped compared to 91.4?% xylose in the control medium. Strain 206 was shown to be a robust strain for ABE production from lignocellulosic materials and has a great potential for industrial application.  相似文献   

2.
Lactic acid fermentation in glucose medium with periodic electrodialysis by Lactococcus lactis IO-1 was examined. The fermentation time was reduced considerably, compared with the time required for ordinary built-in electrodialysis fermentation with a microfilter module (ED-MF). Fermentation with an initial glucose concentration of 80 g/l was completed within 18 h, about 50% of the time required with an ED-MF. The maximum productivity of this novel system was about two-fold that of the ordinary ED-MF system even when the lactate concentration in broth was higher than in the ED-MF. The H2 gas produced from the ED-MF made the culture redox potential (CRP) lower than in the novel system. Online culture redox potential was monitored and higher CRP indicated a higher fermentation rate.  相似文献   

3.
Escherichia coli FBR5 containing recombinant genes for ethanol production on plasmids that are also required for anaerobic growth was cultivated continuously on 50 g/l xylose or glucose in the absence of antibiotics and without the use of special measures to limit the entry of oxygen into the fermenter. Under chemostat conditions, stable ethanol yields of ca. 80–85% of the theoretical were obtained on both sugars over 26 days at dilution rates of 0.045/h (xylose) and 0.075/h (glucose), with average plasmid retention rates of 96% (xylose) and 97% (glucose). In a continuous fluidized bed fermenter, with the cells immobilized on porous glass beads, the extent of plasmid retention by the free cells fell rapidly, while that of the immobilized cells remained constant. This was shown to be due to diffusion of oxygen through the tubing used to recirculate the medium and free cells. A change to oxygen-impermeable tubing led to a stable high rate of plasmid retention (more than 96% of both the free and immobilized cells) with ethanol yields of ca. 80% on a 50 g/l xylose feed. The maximum permissible level of oxygen availability consistent with high plasmid retention by the strain appears to be of the order of 0.1 mmol per hour per gram dry biomass, based on measurements of the rate of oxygen penetration into the fermenters. Revertant colonies lacking the ethanologenic plasmid were easily detectable by their morphology which correlated well with their lack of ampicillin resistance upon transfer plating.  相似文献   

4.
Kim TB  Oh DK 《Biotechnology letters》2003,25(24):2085-2088
A chemically defined medium that included urea (5 g l(-1)) as a nitrogen source and various vitamins was substituted for a complex medium containing yeast extract (10 g l(-1)) in the production of xylitol by Candida tropicalis. In a fed-batch culture with the chemically defined medium, 237 g xylitol l(-1) was produced from 270 g xylose l(-1) after 120 h. The volumetric rate of xylitol production and the xylitol yield from xylose were 2 g l(-1) h(-1) and 89%, respectively. These values were about 5% lower and 4% higher, respectively, than those obtained using the complex medium. These results indicate that xylitol can be produced effectively in a chemically defined medium.  相似文献   

5.
Bioethanol production by white rot fungus (Trametes versicolor), identified from fungal mixture in naturally decomposing wood samples, from hexoses and xylose was characterized. Results showed that T. versicolor can grow in culture, under hypoxic conditions, with various mixtures of hexoses and xylose and only xylose. Xylose was efficiently fermented to ethanol in media containing mixtures of hexoses and xylose, such as MBMC and G11XY11 media (Table?1), yielding ethanol concentrations of 20.0 and 9.02?g/l, respectively, after 354?h of hypoxic culture. Very strong correlations were found between ethanolic fermentation (alcohol dehydrogenase activity and ethanol production), sugar consumption and xylose catabolism (xylose reductase, xylitol dehydrogenase and xylulokinase activities) after 354?h in culture in MBMC medium. In a medium (G11XY11) containing a 1:1 glucose/xylose ratio, fermentation efficiency of total sugars into ethanol was 80% after 354?h.  相似文献   

6.
The production of optically pure lactic acid in a high yield from xylose or a mixture of xylose and glucose, which is a model hydrolysate of lignocellulose, is described. In a single cultivation, Enterococcus casseliflavus produced 38 g/l of lactic acid with an optical purity of 96% enantiomeric excess (ee) and 6.4 g/l of acetic acid from 50 g/l of xylose when MRS medium was used. When a mixture of 50 g/l of xylose and 100 g/l of glucose was used as the carbon source in a cultivation of E. casseliflavus alone, glucose was converted to lactic acid in the early phase of the cultivation but xylose was hardly consumed. In a co-cultivation where E. casseliflavus and Lactobacillus casei specific for glucose were simultaneously inoculated, little or no lactic acid was produced after the glucose was almost consumed. A co-cultivation with two-stage inoculation (in which E. casseliflavus was added at a cultivation time of 40 h after L. casei cells were inoculated) resulted in complete consumption of 50 g/l of xylose and 100 g/l of glucose. In the co-cultivation, 95 g/l of lactic acid with a high optical purity of 96% ee was obtained at 192 h. Such a co-cultivation using two microorganisms specific for each sugar is considered to be one promising cultivation technique for the efficient production of lactic acid from a sugar mixture derived from lignocellulose.  相似文献   

7.
Electrodialysis culture (ED-C) and control culture of Lactococcus lactis IO-1 were inoculated with 3 and 12 h seed cultures. Regardless of seed culture age, control cultures needed 30 h for the completion of L-lactate fermentation. By contrast, the fermentation times for ED-Cs inoculated with 3 and 12 h seed cultures were reduced by 38 and 27% when compared to those of control cultures. Seed culture age can be varied to reduce the fermentation time for ED-C.  相似文献   

8.
L(+)-lactic acid production was investigated using an enzymatic hydrolysate of waste office automation (OA) paper in a culture of the filamentous fungus Rhizopus oryzae. In 4 d culture, 82.8 g/l glucose, 7 g/l xylose, and 3.4 g/l cellobiose contained in the hydrolysate were consumed to produce 49.1 g/l of lactic acid. The lactic acid yield and production rate were only 0.59 g/g and 16.3 g/l/d, respectively, only 75% and 61% of the results from the glucose medium. The low production rate from waste OA hydrolysate was elucidated by trials using xylose as the sole carbon source; in those trials, the lactic acid production rate was 7.3 g/l/d, only 28% that of glucose or cellobiose. The low lactic acid yield from waste OA hydrolysate was clarified by trials using artificial hydrolysates comprised of 7:2:1 or 7:1:2 ratios of glucose:cellobiose:xylose. For both, the lactic acid production rate of 17.4 g/l/d matched that of waste OA paper, while the lactic acid yield was similar to that of the glucose medium. This indicates that the production rate may be inhibited by xylose derived from hemicellulose, and the yield may be inhibited by unknown compounds derived from paper pulp.  相似文献   

9.
The effect of glycerol on xylose-to-xylitol bioconversion by Candida guilliermondii was evaluated by its addition (0.7 and 6.5 g/l) to semidefined media (xylose as a substrate). The glycerol concentrations were chosen based on the amounts produced during previous studies on xylitol production by C. guilliermondii. Medium without glycerol addition (control) and medium containing glycerol (53 g/l) in substitution to xylose were also evaluated. According to the results, the addition of 0.7 g/l glycerol to the fermentation medium favored not only the yield (Y P/S = 0.78 g/g) but also the xylitol productivity (Q P = 1.13 g/l/h). During the xylose-to-xylitol bioconversion, the formation of byproducts (glycerol and ethanol) was observed for all conditions employed. In relation to the cellular growth, glycerol as the only carbon source for C. guilliermondii was better than xylose or xylose and glycerol mixtures, resulting in a maximum cellular concentration (5.34 g/l).  相似文献   

10.
Givry S  Duchiro F 《Mikrobiologiia》2008,77(3):324-330
Lactobacillus bifermentans was used to produce the intracellular enzymes L-arabinose isomerase and D-xylose isomerase. Various factors of cultivation (temperature, pH, or incubation period) and culture medium composition (mineral salts, carbon and nitrogen source) were studied to select the conditions that maximize production of these enzymes. Arabinose isomerase and xylose isomerase activities were 9.4 and 7.24 U/ml, respectively. They were highest at 9 h of cultivation in the optimized medium, 1.6 times higher than that in the basic MRS broth. The optimal medium composition and cultivation conditions were determined. On the other hand, the strain required for growth Tween 80 (1 g/l) and a source of inorganic nitrogen (e.g. ammonium citrate). The bacterium had no requirement for sodium acetate for both growth and production of isomerases. The production rate of enzymes was increased when metal ions were added and mainly manganese (2.5 mM).  相似文献   

11.
Summary Enhanced rates of continuous ethanol production by a flocculent strain ofPichia stipitis from a sugar mixture (xylose 75%, glucose 20%, arabinose 5%) were attained using a single-stage gas lift tower fermentor. With a substrate feed of 50g/l, the biomass accumulated at a level near 50g/l, showed a maximum and stable ethanol productivity of 10.7 g/l.h, with a substrate conversion of 80%; the ethanol yield reached 0.41g/g. In these operating conditions, similar performances were obtained when D.xylose alone was supplied.  相似文献   

12.
研究了树干毕赤酵母NLP31在木糖质量浓度为45 g/L的3种发酵培养基Ⅰ、Ⅱ和Ⅲ上发酵3轮的发酵性能以及在45 g/L木糖或混合糖(葡萄糖30 g/L,木糖15 g/L)的发酵培养基Ⅲ上的代谢历程。结果表明:树干毕赤酵母NLP31在发酵培养基Ⅲ上,乙醇浓度和乙醇得率均达到最高,分别为(17.29±0.15)g/L和(84.65±0.58)%。在45 g/L木糖或混合糖(葡萄糖30 g/L,木糖15 g/L)的发酵培养基Ⅲ上的代谢历程表明:混合糖发酵达到最大乙醇得率的时间仅为12 h,要比单一木糖发酵缩短了8 h。树干毕赤酵母NLP31在以廉价的无机N源为发酵培养基上的乙醇发酵性能高,能够降低燃料乙醇的生产成本。  相似文献   

13.
Summary Pichia stipitis NRRL Y-7124 yeast cells were for the first time immobilized both in agar gel beads and on fine nylon net for ethanol fermentation on D-xylose, in order to investigate the possibility of using the biocatalyst for improved utilization of the biomass pentose fraction. With free cells the initial xylose level affected little ethanol production, with a maximum of 22 g/l ethanol obtained in 5 days on 5% and of 40 g/l in 8 days on 10% xylose, and an average volumetric productivity of about 0.22 g/lh. The maximum ethanol concentration of 19.5% on 5% xylose with the nylon net attached cells in a continuous packed-bed column reactor was obtained with 35 h residence time. The volumetric productivities of 0.56 g/lh at 19.5 g/l ethanol and 1.0 g/lh at 15.0 g/l ethanol were markedly higher than those obtained with free cells. The stability of the immobilized biocatalyst was excellent. The same reactor could be used for at least 80 days without significant activity loss.  相似文献   

14.
This research was designed to maximize ethanol production from a glucose-xylose sugar mixture (simulating a sugar cane bagasse hydrolysate) by co-fermentation with Zymomonas mobilis and Pachysolen tannophilus. The volumetric ethanol productivity of Z. mobilis with 50 g glucose/l was 2.87 g/l/h, giving an ethanol yield of 0.50 g/g glucose, which is 98% of the theoretical. P. tannophilus when cultured on 50 g xylose/l gave a volumetric ethanol productivity of 0.10 g/l/h with an ethanol yield of 0.15 g/g xylose, which is 29% of the theoretical. On optimization of the co-fermentation with the sugar mixture (60 g glucose/l and 40 g xylose/l) a total ethanol yield of 0.33 g/g sugar mixture, which is 65% of the theoretical yield, was obtained. The co-fermentation increased the ethanol yield from xylose to 0.17 g/g. Glucose and xylose were completely utilized and no residual sugar was detected in the medium at the end of the fermentation. The pH of the medium was found to be a good indicator of the fermentation status. The optimum conditions were a temperature of 30°C, initial inoculation with Z. mobilis and incubation with no aeration, inactivation of bacterium after the utilization of glucose, followed by inoculation with P. tannophilus and incubation with limited aeration.  相似文献   

15.
By immobilizing fungi on a urethane foam carrier (UFC), a novel solid-state fermentation system was developed in order to produce repeatedly industrial useful enzymes. In this study, alkaline protease was produced by growing Aspergillus oryzae 460 (ATCC 20386) in a flask scale. Repeated batch production of alkaline protease was carried out by exchanging a part of the culture broth with fresh medium every 12 hr. The effects of feeding medium composition, and feeding volume were examined. Alkaline protease production stopped in the early phase at high values of soluble starch feeding rate and culture broth dilution rate. The enzyme production continued longer when 10 to 30 g/l polypepton was added to the feeding medium. Using soluble starch solution as feeding medium, a maximum activity of 520,000 U/l-bulk volume alkaline protease was obtained at culture time of 168 hr where the culture conditions of soluble starch concentration and feeding volume were 100 g/l and 0.025 l/l-bulk volume/dose, respectively. Production of the enzyme continued for 300 hr and total aklaline protease activity reached 870,000 U/l-bulk volume by adding 30 g/l polypepton to the fresh medium.  相似文献   

16.
The ability of a recombinant Saccharomyces yeast strain to ferment the sugars glucose, xylose, arabinose and galactose which are the predominant monosaccharides found in corn fibre hydrolysates has been examined. Saccharomyces strain 1400 (pLNH32) was genetically engineered to ferment xylose by expressing genes encoding a xylose reductase, a xylitol dehydrogenase and a xylulose kinase. The recombinant efficiently fermented xylose alone or in the presence of glucose. Xylose-grown cultures had very little difference in xylitol accumulation, with only 4 to 5g/l accumulating, in aerobic, micro-aerated and anaerobic conditions. Highest production of ethanol with all sugars was achieved under anaerobic conditions. From a mixture of glucose (80g/l) and xylose (40g/l), this strain produced 52g/l ethanol, equivalent to 85% of theoretical yield, in less than 24h. Using a mixture of glucose (31g/l), xylose (15.2g/l), arabinose (10.5g/l) and galactose (2g/l), all of the sugars except arabinose were consumed in 24h with an accumulation of 22g ethanol/l, a 90% yield (excluding the arabinose in the calculation since it is not fermented). Approximately 98% theoretical yield, or 21g ethanol/l, was achieved using an enzymatic hydrolysate of ammonia fibre exploded corn fibre containing an estimated 47.0g mixed sugars/l. In all mixed sugar fermentations, less than 25% arabinose was consumed and converted into arabitol.  相似文献   

17.
Summary Eucalyptus globulus wood hydrolysates were concentrated by vacuum evaporation to increase their xylose contents, treated with activated charcoal, supplemented with nutrients and used as culture media for xylitol production by Debaryomyces hansenii NRRL Y-7426. The susceptibility of hydrolysates to fermentation was strongly dependent on the initial cell concentration: media containing 58–78 g xylose/l were hardly consumed in batch experiments starting with 16 g cells/l, whereas 39–41 g xylitol/l were achieved in fermentations carried out with similar concentration of the carbon source and initial cell concentrations of 50–80 g/l).  相似文献   

18.
A suspension culture of Calocedrus formosana Florin was studied as a material for efficient production of hinokitiol. Murashige-Skoog’s medium containing 3% sucrose and 1 mg/l 1-naphthylacetic acid was most desirable for cell growth. Cell growth, expressed as fresh cell weight, showed a 20-fold increase after 4 weeks of culture in this medium. Adding potassium acetate or chitosan to the medium increased hinokitiol production. The highest hinokitiol yield, 1700 μg/g fresh cells, was obtained when cells were cultured in the growth medium with chitosan.  相似文献   

19.
Summary With slow feeding of xylose to a batch fermentation byPachysolen tannophilus, the yield of ethanol from xylose was improved to 0.41 g/g (80% of theoretical) with a maximum ethanol concentration of 26.5 g/L at 120 h. This is a 41% improvement on the ethanol yield observed for batch fermentations without slow feeding. The optimum level of xylose in the medium was determined to be between 5 and 8g/L; xylose at greater than 10 g/L leads to xylitol accumulation, whereas xylose below 3 g/L permits ethanol to be oxidized to acetate. This latter effect is exacerbated by increased aeration.  相似文献   

20.
Batch fermentation of 60g/l glucose/xylose mixture by Clostridium acetobutylicum ATCC 824 was investigated on complex culture medium. Different proportions of mixtures, ranged between 10 and 50g of each sugar/l, were fermented during pH control at 4.8 (optimum pH for solventogenesis) or during CaCO3 addition. Using xylose-pregrown cells and pH control, an important amount of xylose was left over at the end of the fermentation when the glucose concentration was higher than that of xylose. The addition of 10g of CaCO3/l (to prevent the pH dropping below 4.8) increased xylose uptake: a substantial decrease of residual xylose was observed when xylose-pregrown cells as well as glucose-pregrown cells were used as inoculum for all the mixture proportions studied. MgCO3 (Mg2+-containing compound) and CaCl2 (Ca2+-containing compound) reduced residual xylose only during pH control at 4.8 by NaOH addition. As butanol is the major limiting factor of xylose uptake in C. acetobutylicum, fermentations were carried out with or without CaCO3 in butanol-containing media or in iron deficient media (under iron limitation, butanol synthesis occurred early and could inhibit xylose uptake). Results showed that an excess of CaCOCaCO3 could increase butanol tolerance which resulted in an increase in xylose utilization. This positive effect seem to be specific to Ca2+- or Mg2+-containing compounds, going beyond the buffering effect of carbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号