首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benzothiazole amides were identified as TRPV1 antagonists from high throughput screening using recombinant human TRPV1 receptor and structure-activity relationships were explored to pinpoint key pharmacophore interactions. By increasing aqueous solubility, through the attachment of polar groups to the benzothiazole core, and enhancing metabolic stability, by blocking metabolic sites, the drug-like properties and pharmokinetic profiles of benzothiazole compounds were sufficiently optimized such that their therapeutic potential could be verified in rat pharmacological models of pain.  相似文献   

2.
Lead optimization of piperidine amide HTS hits, based on an anilino-thiazole core, led to the identification of analogs which displayed low nanomolar blocking activity at the canonical transient receptor channels 3 and 6 (TRPC3 & 6) based on FLIPR (carbachol stimulated) and electrophysiology (OAG stimulated) assays. In addition, the anilino-thiazole amides displayed good selectivity over other TRP channels (TRPA1, TRPV1, and TRPV4), as well as against cardiac ion channels (CaV1.2, hERG, and NaV1.5). The high oxidation potential of the aliphatic piperidine and aniline groups, as well as the lability of the thiazole amide group contributed to the high clearance observed for this class of compounds. Conversion of an isoquinoline amide to a naphthyridine amide markedly reduced clearance for the bicyclic piperidines, and improved oral bioavailability for this compound series, however TRPC3 and TRPC6 blocking activity was reduced substantially. Although the most potent anilino-thiazole amides ultimately lacked oral exposure in rodents and were not suitable for chronic dosing, analogs such as 1419, 22, and 23 are potentially valuable in vitro tool compounds for investigating the role of TRPC3 and TRPC6 in cardiovascular disease.  相似文献   

3.
4.
TRPV1 receptor agonists such as the vanilloid capsaicin and the potent analog resiniferatoxin are well known potent analgesics. Depending on the vanilloid, dose, and administration site, nociceptor refractoriness may last from minutes up to months, suggesting the contribution of different cellular mechanisms ranging from channel receptor desensitization to Ca(2+) cytotoxicity of TRPV1-expressing neurons. The molecular mechanisms underlying agonist-induced TRPV1 desensitization and/or tachyphylaxis are still incompletely understood. Here, we report that prolonged exposure of TRPV1 to agonists induces rapid receptor endocytosis and lysosomal degradation in both sensory neurons and recombinant systems. Agonist-induced receptor internalization followed a clathrin- and dynamin-independent endocytic route, triggered by TRPV1 channel activation and Ca(2+) influx through the receptor. This process appears strongly modulated by PKA-dependent phosphorylation. Taken together, these findings indicate that TRPV1 agonists induce long-term receptor down-regulation by modulating the expression level of the channel through a mechanism that promotes receptor endocytosis and degradation and lend support to the notion that cAMP signaling sensitizes nociceptors through several mechanisms.  相似文献   

5.
6.
Ren JY  Song JX  Lu MY  Chen H 《Regulatory peptides》2011,169(1-3):49-57
We previously found that the expression of transient receptor potential vanilloid 1 (TRPV1) and contents of calcitonin gene-related peptide (CGRP) and substance P (SP), two main neuropeptides released from TRPV1, were decreased in diabetic hearts. This study aimed to test whether decreased TRPV1, CGRP and SP levels were responsible for the loss of cardioprotection by ischemic postconditioning (IPostC) in isolated perfused heart from streptozotocin-induced diabetic rats. IPostC effectively protected non-diabetic hearts against ischemia/reperfusion injury by improving cardiac function and lowering creatine kinase (CK) and cardiac troponin I (cTnI) release, which could be abolished by inhibiting TRPV1, CGRP receptor or SP receptor. However, IPostC had no effect on cardiac function and the release of CK and cTnI in diabetic hearts regardless of whether TRPV1, CGRP receptor or SP receptor were inhibited. CGRP or SP-induced postconditioning significantly prevented both non-diabetic and diabetic hearts from ischemia/reperfusion injury by improving cardiac function and lowering CK and cTnI release. Additionally, IPostC markedly increased CGRP and SP release in non-diabetic hearts, which could be reversed with TRPV1 inhibition, but not CGRP receptor or SP receptor inhibition. However, IPostC failed to affect CGRP and SP release in diabetic hearts in the presence or absence of TRPV1, CGRP receptor or SP receptor inhibition. These results indicate that the loss of cardioprotection by IPostC during diabetes is partly associated with a failure to increase CGRP and SP release, likely due to decreased TRPV1 expression and CGRP and SP contents in diabetic hearts.  相似文献   

7.
Transient Receptor Potential Vanilloid 1 (TRPV1) is a non-selective cation channel that integrates several stimuli into nociception and neurogenic inflammation. Here we investigated the subtle TRPV1 interplay with candidate membrane partners in live cells by a combination of spatio-temporal fluctuation techniques and fluorescence resonance energy transfer (FRET) imaging. We show that TRPV1 is split into three populations with fairly different molecular properties: one binding to caveolin-1 and confined into caveolar structures, one actively guided by microtubules through selective binding, and one which diffuses freely and is not directly implicated in regulating receptor functionality. The emergence of caveolin-1 as a new interactor of TRPV1 evokes caveolar endocytosis as the main desensitization pathway of TRPV1 receptor, while microtubule binding agrees with previous data suggesting the receptor stabilization in functional form by these cytoskeletal components. Our results shed light on the hitherto unknown relationships between spatial organization and TRPV1 function in live-cell membranes.  相似文献   

8.
RNA interference (RNAi) has proven to be a powerful technique to study the function of genes by producing knock-down phenotypes. Here, we report that intrathecal injection of an siRNA against the transient receptor potential vanilloid receptor 1 (TRPV1) reduced cold allodynia of mononeuropathic rats by more than 50% over a time period of approximately 5 days. A second siRNA targeted to a different region of the TRPV1 gene was employed and confirmed the analgesic action of a TRPV1 knock-down. Furthermore, siRNA treatment diminished spontaneous visceral pain behavior induced by capsaicin application to the rectum of mice. The analgesic effect of siRNA-mediated knockdown of TRPV1 in the visceral pain model was comparable to that of the low-molecular weight receptor antagonist BCTC. Our data demonstrate that TRPV1 antagonists, including TRPV1 siRNAs, have potential in the treatment of both, neuropathic and visceral pain.  相似文献   

9.
Odontoblasts have been suggested to contribute to nociceptive sensation in the tooth via expression of the transient receptor potential (TRP) channels. The TRP channels as a family of nonselective cation permeable channels play an important role in sensory transduction of human. In this study, we examined the expression of transient receptor potential vanilloid-1 (TRPV1), transient receptor potential vanilloid-2 (TRPV2) and transient receptor potential vanilloid-3 (TRPV3) channels in native human odontoblasts (HODs) and long-term cultured human dental pulp cells with odontoblast phenotyoe (LHOPs) obtained from healthy wisdom teeth with the use of immunohistochemistry (IHC), immunofluorescence (IF), quantitative real-time polymerase chain reaction (qRT-PCR),western blotting (WB) and immunoelectron microscopy (IEM) assay. LHOPs samples were made into ultrathin sections, mounted on nickel grids, floated of three TRPV antibodies conjugated with 10 nm colloidal gold particles and observed under IEM at 60,000 magnifications. The relative intracellular distributions of these three channels were analyzed quantitatively on IEM images using a robust sampling, stereological estimation and statistical evaluation method. The results of IHC and IF convinced that TRPV1, TRPV2 and TRPV3 channels were expressed in native HODs and (LHOPs). The result of qRT-PCR and WB confirmed that the gene and protein expression of TRPV1, TRPV2, and TRPV3 channels and TRPV1 mRNA are more abundantly expressed than TRPV2 and TRPV3 in HODs (P?<?0.05). Quantitative analysis of IEM images showed that the relative intracellular distributions of these three channels are similar, and TRPV1, TRPV2 and TRPV3 proteins were preferential labeled in human odontoblast processes, mitochondria, and endoplasmic reticulum. Thus, HODs could play an important role in mediating pulp thermo-sensation due to the expression of these three TRPV channels. The difference of relative intracellular distributions of three channels suggests that special structures such as processes may have an important role to sensing of the outer stimuli first.  相似文献   

10.
The capsaicin receptor TRPV1 is an emerging target for the treatment of pain with a unique expression profile in peripheral nociceptors and the ability to show polymodal activation, TRPV1 is an important integrator of responses to inflammatory mediators. Sensitization of TRPV1 during chronic pain is believed to contribute to the transduction of noxious signaling for normally innocuous stimuli and consequently the search for novel TRPV1 therapeutics is intense. The current understanding of the physiological role the receptor, as well as the potential therapeutic utility and emerging liabilities of TRPV1 modulators are discussed.  相似文献   

11.
The transient receptor potential family V1 channel (TRPV1) is activated by multiple stimuli, including capsaicin, acid, endovanilloids, and heat (>42C). Post-translational modifications to TRPV1 result in dynamic changes to the sensitivity of receptor activation. We have previously demonstrated that β-arrestin2 actively participates in a scaffolding mechanism to inhibit TRPV1 phosphorylation, thereby reducing TRPV1 sensitivity. In this study, we evaluated the effect of β-arrestin2 sequestration by G-protein coupled receptors (GPCRs) on thermal and chemical activation of TRPV1. Here we report that activation of mu opioid receptor by either morphine or DAMGO results in β-arrestin2 recruitment to mu opioid receptor in sensory neurons, while activation by herkinorin does not. Furthermore, treatment of sensory neurons with morphine or DAMGO stimulates β-arrestin2 dissociation from TRPV1 and increased sensitivity of the receptor. Conversely, herkinorin treatment has no effect on TRPV1 sensitivity. Additional behavioral studies indicate that GPCR-driven β-arrestin2 sequestration plays an important peripheral role in the development of thermal sensitivity. Taken together, the reported data identify a novel cross-talk mechanism between GPCRs and TRPV1 that may contribute to multiple clinical conditions.  相似文献   

12.
Transient receptor potential (TRP) cation channels are emerging in vascular biology. In particular, the expression of the capsaicin receptor (TRPV1) was reported in vascular smooth muscle cells. This study characterized the arteriolar TRPV1 function and expression in the rat. TRPV1 mRNA was expressed in various vascular beds. Six commercially available antibodies were tested for TRPV1 specificity. Two of them were specific (immunostaining was abolished by blocking peptides) for neuronal TRPV1 and one recognized vascular TRPV1. TRPV1 was expressed in blood vessels in the skeletal muscle, mesenteric and skin tissues, as well as in the aorta and carotid arteries. TRPV1 expression was found to be regulated at the level of individual blood vessels, where some vessels expressed, while others did not express TRPV1 in the same tissue sections. Capsaicin (a TRPV1 agonist) evoked constrictions in skeletal muscle arteries and in the carotid artery, but had no effect on the femoral and mesenteric arteries or the aorta. In blood vessels, TRPV1 expression was detected in most of the large arteries, but there were striking differences at level of the small arteries. TRPV1 activity was suppressed in some isolated arteries. This tightly regulated expression and function suggests a physiological role for vascular TRPV1.  相似文献   

13.
Endothelin-1 (ET-1) both stimulates nociceptors and sensitizes them to painful stimuli. The cellular mechanisms of the ET-1-mediated effects are only poorly understood. TRPV1, the heat-, proton-, and capsaicin-sensitive cation channel already known to be modulated by a number of cellular mediators released by painful stimuli and during inflammation, is a potential target for the action of ET-1. In immunocytochemistry of rat lumbar dorsal root ganglion using TRPV1- and ET(A) receptor-specific antibodies, both proteins were found to be co-expressed in small sensory neurons. To provide evidence that ET-1 can modulate TRPV1 activity via the ET(A) receptor, we used HEK 293 cells transiently co-expressing a fusion protein of TRPV1 and the yellow fluorescent protein (TRPV1-YFP) and the ET(A) receptor. In whole-cell patch clamp recordings of HEK293 cells co-expressing TRPV1-YFP and the ET(A) receptor, capsaicin (10 nM) elicited small currents, which were markedly potentiated when capsaicin (10 nM) and ET-1 (100 nM) were applied simultaneously. The data indicate that ET-1 potentiates TRPV1 activity via the ET(A) receptor and that this process is likely to play a crucial role in the pain-producing and pain-potentiating effects of ET-1. Thus, ET(A) receptor antagonists may be of importance in painful states with increased circulating ET-1 levels, as found in cancer and in chronic inflammation.  相似文献   

14.
Yu Q  Wang Y  Yu Y  Li Y  Zhao S  Chen Y  Waqar AB  Fan J  Liu E 《Molecular biology reports》2012,39(7):7583-7589
The capsaicin receptor, known as transient receptor potential vanilloid subfamily member 1 (TRPV1), is an important membrane receptor that has been implicated in obesity, diabetes, metabolic syndrome and cardiovascular diseases. The rabbit model is considered excellent for studying cardiovascular and metabolic diseases, however, the tissue expression of TRPV1 and physiological functions of its ligand capsaicin on diet-induced obesity have not been fully defined in this model. In the current study, we investigated the tissue expression of TRPV1 in normal rabbits using real-time RT-PCR and Western blot analysis. Rabbit TRPV1 mRNA was highly expressed in a variety of organs, including the kidneys, adrenal gland, spleen and brain. A phylogenetic analysis showed that the amino acid sequence of rabbit TRPV1 was closer to human TRPV1 than rodent TRPV1. To examine the effect of capsaicin (a pungent compound in hot pepper) on body weight, rabbits were fed with either a high fat diet (as control) or high fat diet containing 1% hot pepper. We found that the body weight of the hot pepper-fed rabbits was significantly lower than the control group. We conclude that the intake of capsaicin can prevent diet-induced obesity and rabbit model is useful for the study of TRPV1 function in cardiovascular and metabolic diseases.  相似文献   

15.
Transient receptor potential (TRP) vanilloid 1 (TRPV1) is a molecular pain receptor belonging to the TRP superfamily of nonselective cation channels. As a polymodal receptor, TRPV1 responds to heat and a wide range of chemical stimuli. The influx of calcium after channel activation serves as a negative feedback mechanism leading to TRPV1 desensitization. The cellular calcium sensor calmodulin (CaM) likely participates in the desensitization of TRPV1. Two CaM-binding sites are identified in TRPV1: the N-terminal ankyrin repeat domain (ARD) and a short distal C-terminal (CT) segment. Here, we present the crystal structure of calcium-bound CaM (Ca2+–CaM) in complex with the TRPV1-CT segment, determined to 1.95-Å resolution. The two lobes of Ca2+–CaM wrap around a helical TRPV1-CT segment in an antiparallel orientation, and two hydrophobic anchors, W787 and L796, contact the C-lobe and N-lobe of Ca2+–CaM, respectively. This structure is similar to canonical Ca2+–CaM-peptide complexes, although TRPV1 contains no classical CaM recognition sequence motif. Using structural and mutational studies, we established the TRPV1 C terminus as a high affinity Ca2+–CaM-binding site in both the isolated TRPV1 C terminus and in full-length TRPV1. Although a ternary complex of CaM, TRPV1-ARD, and TRPV1-CT had previously been postulated, we found no biochemical evidence of such a complex. In electrophysiology studies, mutation of the Ca2+–CaM-binding site on TRPV1-ARD abolished desensitization in response to repeated application of capsaicin, whereas mutation of the Ca2+–CaM-binding site in TRPV1-CT led to a more subtle phenotype of slowed and reduced TRPV1 desensitization. In summary, our results show that the TRPV1-ARD is an important mediator of TRPV1 desensitization, whereas TRPV1-CT has higher affinity for CaM and is likely involved in separate regulatory mechanisms.  相似文献   

16.
Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel activated by multiple stimuli and is implicated in a variety of pain disorders. Dynamic sensitization of TRPV1 activity by A-kinase anchoring protein 150 demonstrates a critical role for scaffolding proteins in nociception, yet few studies have investigated scaffolding proteins capable of mediating receptor desensitization. In this study, we identify β-arrestin-2 as a scaffolding protein that regulates TRPV1 receptor activity. We report β-arrestin-2 association with TRPV1 in multiple cell models. Moreover, siRNA-mediated knockdown of β-arrestin-2 in primary cultures resulted in a significant increase in both initial and repeated responses to capsaicin. Electrophysiological analysis further revealed significant deficits in TRPV1 desensitization in primary cultures from β-arrestin-2 knock-out mice compared with wild type. In addition, we found that β-arrestin-2 scaffolding of phosphodiesterase PDE4D5 to the plasma membrane was required for TRPV1 desensitization. Importantly, inhibition of PDE4D5 activity reversed β-arrestin-2 desensitization of TRPV1. Together, these results identify a new endogenous scaffolding mechanism that regulates TRPV1 ligand binding and activation.  相似文献   

17.
A-Kinase anchoring protein 150 (AKAP150) is required for the phosphorylation of transient receptor potential cation channel subfamily V member 1 (TRPV1) by PKA or PKC in sensory neurons and, hence, affects TRPV1-dependent hyperalgesia under pathological conditions. Recently, we showed that the activation of N-methyl-d-aspartate (NMDA) receptors sensitizes TRPV1 by enhancing serine phosphorylation through PKC in trigeminal nociceptors. In this study, we extended this observation by investigating whether AKAP150 mediates NMDA-induced phosphorylation of TRPV1 via PKC in native sensory neurons in the rat. By adopting a phospho-specific antibody combined with a surface biotinylation assay, we first assessed NMDA-induced changes in the phosphorylation level of serine 800 residues (S800) in TRPV1 delimited to cell surface membrane in cultured trigeminal ganglia (TG). The biotinylation assay yielded that the application of NMDA significantly increased the phosphorylation of S800 (p-S800) of TRPV1 at time points correlating with the development of NMDA-induced mechanical hyperalgesia [10]. We then obtained a siRNA sequence against AKAP150 that dose-dependently down-regulated the AKAP150 protein. Pretreatment of TG culture with the siRNA, but not mismatch sequences, prevented the NMDA-induced phosphorylation of serine residues of total TRPV1 as well as S800 of membrane bound TRPV1. We confirmed that AKAP150 co-immunoprecipitated with TRPV1 and demonstrated that it also co-immunoprecipitated with NMDA receptor subunits (NR1 and NR2B) in TG. These data offer novel information that the activation of NMDA-induced TRPV1 sensitization involves p-S800 of TRPV1 in cell surface membrane in native sensory neurons and that AKAP150 is required for NMDA-and PKC-mediated phosphorylation of TRPV1 S800. Therefore, we propose that the NMDA receptor, AKAP150, and TRPV1 forms a signaling complex that underlies the sensitization of trigeminal nociceptors by modulating phosphorylation of specific TRPV1 residues.  相似文献   

18.
TRPV1 (transient receptor potential cation channel, subfamily V, member 1) is best studied in peripheral sensory neurons as a pain receptor; however TRPV1 is expressed in numerous tissues and cell types including those of the cardiovascular system. TRPV1 expression is upregulated in the hypertrophic heart, and the channel is positioned to receive stimulatory signals in the hypertrophic heart. We hypothesized that TRPV1 has a role in regulating cardiac hypertrophy. Using transverse aortic constriction to model pressure overload cardiac hypertrophy we show that mice lacking functional TRPV1, compared to wild type, have improved heart function, and reduced hypertrophic, fibrotic and apoptotic markers. This suggests that TRPV1 plays a role in the progression of cardiac hypertrophy, and presents a possible therapeutic target for the treatment of cardiac hypertrophy and heart failure.  相似文献   

19.
The transient receptor potential cation channel subfamily V member 1 (TRPV1) is a protein currently under scrutiny as a pharmacological target for pain management therapies. Recently, the role of TRPV1-microtubule interaction in transducing nociception stimuli to cells by cytoskeletal rearrangement was proposed. In this work, we investigate TRPV1-microtubule interaction in living cells under the resting or activated state of TRPV1, as well as in presence of structurally intact or depolymerized cytoskeletal microtubules. We combined a toolbox of high resolution/high sensitivity fluorescence imaging techniques (such as FRET, correlation spectroscopy, and fluorescence anisotropy) to monitor TRPV1 aggregation status, membrane mobility, and interaction with microtubules. We found that TRPV1 is a dimeric membrane protein characterized by two populations with different diffusion properties in basal condition. After stimulation with resiniferatoxin, TRPV1 dimers tetramerize. The tetramers and the slower population of TRPV1 dimers bind dynamically to intact microtubules but not to tubulin dimers. Upon microtubule disassembly, the interaction with TRPV1 is lost thereby inducing receptor self-aggregation with partial loss of functionality. Intact microtubules play an essential role in maintaining TRPV1 functionality toward activation stimuli. This previously undisclosed property mirrors the recently reported role of TRPV1 in modulating microtubule assembly/disassembly and suggests the participation of these two players in a feedback cycle linking nociception and cytoskeletal remodeling.  相似文献   

20.
We have developed a new class of diarylalkyl amides as novel TRPV1 antagonists. They exhibited potent 45Ca2+ uptake inhibitions in rat DRG neuron. In particular, the amide 59 was identified as a potent antagonist with IC50 of 57 nM. The synthesis and structure–activity relationship of the diarylalkyl amides are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号