首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The changes in intracellular calmodulin levels and cAMP-dependent protein kinase activities have been studied in the testis of normally developing and hypophysectomized rats. It appears that the onset of spermatogenesis which occurs on the first days of the postnatal development, is associated with a major (over fivefold) increase in the calmodulin level and enhancement of the cAMP-dependent protein kinase activity. On the contrary, hypophysectomy of adult animals is associated with a progressive decline in the calmodulin level and a rapid and regular decrease in the cAMP-dependent protein kinase activity. Moreover, measurements of the intracellular calmodulin level and cAMP-dependent kinase activity of isolated testicular germ cells or epididymal spermatozoa have shown that testosterone, administered to hypophysectomized rats as subcutaneous implants, maintains the concentration of these regulatory proteins to normal values.  相似文献   

2.
Phosphorylase kinase from rabbit skeletal muscle has been found to have an intrinsic ATPase activity that occurs at a rate approximately 0.2% of that of its phosphorylase conversion activity and about three times that of its autophosphorylation activity. The characteristics of this ATPase activity were in all aspects tested essentially the same as the kinase's phosphorylase conversion activity. The ATPase requires Mg2+ and is dramatically stimulated by Ca2+ ions. At neutral pH there is a pronounced lag in the rate of product formation that is not present at alkaline pH, a condition that greatly stimulates both the phosphorylase conversion and ATPase activities. ATP is preferentially hydrolyzed over GTP and the Km for MgATP determined in the ATPase assay is 0.14 mM. ADP, an allosteric activator of phosphorylase conversion, also stimulates the ATPase activity, whereas beta-glycerophosphate, an inhibitor of phosphorylase conversion, is an inhibitor of the ATPase activity. Phosphorylation or partial proteolysis of the kinase, which are known to activate phosphorylase conversion, also activate the ATPase activity. Because the phosphorylase conversion and ATPase activities are regulated in parallel, we conclude that activation of the two catalytic activities must share a common underlying basis, namely an enhanced phosphotransferase activity that is independent of the phosphoryl acceptor.  相似文献   

3.
4.
5.
The dephosphorylation of phosphorylase beta kinase by the activated ATP, Mg-dependent protein phosphatase, which is highly specific for the beta-subunit, is stimulated by the deinhibitor protein which neutralizes the effect of inhibitor-1 and the modulator protein on the phosphatase. The specific dephosphorylation of the alpha-subunit of phosphorylase beta kinase by a "latent" protein phosphatase isolated from vascular smooth muscle is stimulated by histone H1 but not affected by the deinhibitor protein. These observations show that there is no strict correlation between the insensitivity of a protein phosphatase to inhibitor-1 or modulator protein and the dephosphorylation of the alpha-subunit of phosphorylase beta kinase.  相似文献   

6.
A simple method of purification of alpha-mannosidase from jack-bean meal is described which yields a product free of beta-N-acetylglucosaminidase activity.  相似文献   

7.
8.
Two tryptic phosphopeptides containing the sites on the alpha and beta subunits of phosphorylase kinase which are phosphorylated by protein kinase, dependent on adenosine 3':5'-monophosphate (cyclic AMP), have been isolated and their amino acid sequences have been determined. 32P-labelled phosphorylase kinase, containing 1.9 mol phosphate per mol enzyme, was digested with an equimolar quantity of trypsin for 2.5 min at pH 7.0, 20 degrees C. This treatment released nearly all the 32P radioactivity associated with the beta subunit as trichloroacetic-acid-soluble material. Only a small proportion of the 32P radioactivity associated with the alpha subunit was solubilised, the remainder being removed in the trichloroacetic acid pellet. The beta-subunit tryptic phosphopeptide was completely resolved from traces of the alpha-subunit phosphopeptide by gel filtration on Sephadex G-25. Further purification by peptide mapping separated the phosphopeptide into four components, each derived from the same nine-amino-acid segment of the betachain, which was found to possess the sequence: Gln-Ser-Gly-Ser(P)-Val-Ile-Tyr-Pro-Leu-Lys. The four components were produced by the partial cyclisation of the N-terminal glutaminyl residue, and by the presence of two alleles for the beta subunit in the rabbit population, which led to a valine-isoleucine ambiguity. The alpha-subunit phosphopeptide was liberated from the trichloroacetic acid pellet by redigestion with trypsin. It was the largest component in the digest which remained soluble in 5% trichloroacetic acid, and obtained in a highly purified form by a single filtration on Sephadex G-50. The peptide comprised 39 amino acids of which nine were serine and three were threonine residues. Only one residue, the serine at position three from the amino terminus, was phosphorylated. The amino-terminal sequence of the peptide was shown to be: Arg-Leu-Ser(P)-Ile-Ser-Thr-Glu-Ser-Glx-Pro-Asx-Gly. The sequences confirm the stoichiometry of the reaction and the absolute specificity of cyclic-AMP-dependent protein kinase for just two of the 200 serine residues in the enzyme. These results and an inspection of the rate of phosphorylation of a number of skeletal muscle proteins, including each enzyme of the glycolytic pathway, lead to the conclusion that cyclic-AMP-dependent protein kinase is an extremely specific enzyme. The molecular basis of this specificity is discussed.  相似文献   

9.
A high-speed supernatant from rat liver contains at least two latent phosphorylase phosphatases the activities of which are revealed by treatment with ethanol, urea, mercaptoethanol or trypsin. This fraction also contains at least one protein which, after heating, inhibits to various degrees the activated form(s) of the two phosphatases. The two latent enzymes can be separated by cellulase-phosphate chromatography and can be differentiated by their preferential activation by ethanol or trypsin and by their different sensitivity to the inhibitory protein after ethanol activation. Activation of the latent phosphorylase phosphatases by ethanol, urea or mercaptoethanol is not accompanied by the destruction of the precursor of the inhibitory protein whereas activation by trypsin is. However, trypsin treatment of fractions previously activated by ethanol decreases their activity and also increases their sensitivity to the inhibitory protein in a way which is unrelated to the destruction of this inhibitor. Furthermore, some protein fractions, almost free of the precursor of the inhibitory protein can be readily activated by trypsin. In is concluded that the activation of the latent phosphorylase phosphorylase phosphatases is unrelated to the destruction of the inhibitory protein.  相似文献   

10.
11.
Two Dutch patients with liver phosphorylase kinase (PhK) deficiency were studied for abnormalities in the PhK liver alpha (alpha L) subunit mRNA by reversed-transcribed-PCR (RT-PCR) and RNase protection assays. One patient, belonging to a large Dutch family that expresses X-linked liver PhK deficiency, had a C3614T mutation in the PhK alpha L coding sequence. The C3614T mutation leads to replacement of proline 1205 with leucine, which changes the composition of an amino acid region, containing amino acids 1195-1214 of the PhK alpha L subunit, that is highly conserved in different species. The patient showed normal levels of PhK alpha L mRNA. The second patient, from an unrelated family, was found to have a TCT (bp 419-421) deletion in the PhK alpha L coding sequence, resulting in a phenylalanine 141 deletion. The same deletion was found in the PhK alpha L coding sequence from lymphocytes of the patient's mother, together with a normal PhK alpha L coding sequence. The phenylalanine that is absent in the PhK alpha L coding sequence of the second patient is a highly conserved amino acid between species. Both the C3614T mutation and the TCT (bp 419-421) deletion were not found in a panel of 80 control X chromosomes. On the basis of these results, it is postulated that the mutations found are responsible for liver PhK deficiency in the two patients investigated.  相似文献   

12.
Cyclic-AMP-dependent protein kinase catalyses the activation of phosphorylase kinase and the phosphorylation of two serine residues on the alpha subunit and beta subunit of phosphorylase kinase [Cohen, P., Watson, D.C. and Dixon, G.H. (1975)]. The dephosphorylation of phosphorylase kinase has been shown to be catalysed by two distinct enzymes, termed alpha-phosphorylase kinase phosphatase and beta-phosphorylase kinase phosphatase. These two enzymes show essentially absolute specificity towards the alpha and beta subunits respectively. The two phosphatases copurified through ethanol fractionation, DEAE-cellulose chromatography and ammonium sulphate precipitation, but were separated from each other by a gel filtration on Sephadex G-200. alpha-Phosphorylase kinase phosphatase was purified 500-fold from the ethanol precipitation step, and beta-phosphorylase kinase phosphatase 320-fold. The molecular weights estimated by gel filtration were 170--180 000 for alpha-phosphorylase kinase phosphatase and 75--80 000 for beta-phosphorylase kinase phosphatase. Since the activity of phosphorylase kinase correlates with the state of phosphorylation of the beta subunit (Cohen, P. (1974)), beta-phosphorylase kinase phosphatase is the enzyme which reverses the activation of phosphorylase kinase. alpha-Phosphorylase kinase phosphatase is an enzyme activity that has not been recognised previously. Since the role of the alpha-subunit phosphorylation is to stimulate the rate of dephosphorylation of the beta subunit (Cohen, P. (1974)), alpha-phosphorylase kinase phosphatase can be regarded as the enzyme which inhibits the reversal of the activation of phosphorylase kinase. The implications of these findings for the hormonal control of phosphorylase kinase activity by multisite phosphorylation are discussed.  相似文献   

13.
14.
The dephosphorylation of phosphorylase kinase by four rabbit skeletal muscle protein phosphatases was studied. The four enzymes used were preparations of protein phosphatases C-I, C-II, H-I, and H-II. Phosphatases C-I, C-II, and H-II were obtained as homogeneous preparations using procedures previously developed. Phosphatase H-I was purified 644-fold from rabbit skeletal muscle for the purposes of this study, and was the major phosphorylase phosphatase activity in the tissue extract. Phosphatases C-I and H-I were relatively specific for removal of the beta subunit phosphate of phosphorylase kinase, this occurring at rates approximately 100 times more rapidly than the removal of the alpha subunit phosphate. In contrast, phosphatases C-II and H-II readily dephosphorylated both the alpha and beta subunits, although the alpha subunit phosphate release occurred at rates about twice that of the beta subunit phosphate. These studies show that skeletal muscle contains two phosphatases capable of acting on phosphorylase kinase, and that these have different specificities as represented by phosphatases H-I and C-I on the one hand, and phosphatases C-II and H-II on the other hand. These studies also provided unequivocal evidence that dephosphorylation of the beta subunit of phosphorylase kinase is solely involved in the inactivation of the cAMP-dependent protein kinase-activated enzyme. When autophosphorylated phosphorylase kinase was used as the substrate, the four phosphatases displayed similar general specificities as they did toward the cAMP-dependent protein kinase-activated enzyme. With none of the phosphatases examined was there any evidence that alpha subunit phosphorylation affected the rate of beta subunit dephosphorylation.  相似文献   

15.
A four year-old Japanese boy with hepatomegaly and hypoglycemia has low activity of hepatic phosphorylase. A survey of enzymes involved in the phosphorylase activating system has revealed that liver phosphorylase kinase is deficient although adenosine 3′,5′-monophosphate (cyclic AMP)-dependent protein kinase and total phosphorylase measured in a mixture supplemented by rabbit muscle phosphorylase kinase show normal activities. The hormone receptor as well as adenyl cyclase system appears to be normal since cyclic AMP increases immediately after intravenous injection of glucagon. His muscle phosphorylase activating system is normal.  相似文献   

16.
Liver protein-degradation rates were determined in young and old C57B1 mice by the method of Swick & Ip [(1974) J. Biol. Chem. 249, 6836-6841]. The results indicated a marked age-related increase in the half-lives of short-lived proteins in the nuclear, mitochondrial, lysosomal and 100000 g-supernatant cellular fractions and in total trichloroacetic acid-precipitable proteins. The efficiency of the degradation system in removing aberrant proteins from livers of young and old mice was tested. The time required for 50% disappearance of puromycinyl-peptides changed from about 20 min in 6-month-old mice to approx. 150 min in 24-month-old animals. These findings suggest that in old animals the proteolytic activity involved in degradation of aberrant proteins, and presumably of "native proteins, is markedly defective.  相似文献   

17.
18.
19.
The influence of fasting and refeeding on the response to adrenergic stimulation of several enzymes involved in glycogen metabolism has been investigated in the isolated, intact rat diaphragm. The in vitro response of the phosphorylase system to terbutaline was found to decrease markedly following fasting. A pronounced increase in this response was seen upon refeeding. This increased responsiveness was normalized by incubation of isolated tissues with palmitate (1.5 mM). Plasma free fatty acid concentration was increased in fasted rats compared to the value found in refed animals. The effect of terbutaline on cyclic AMP concentration and protein kinase activity was not significantly influenced by fasting and refeeding while fasting decreased the effect of terbutaline upon phosphorylase b kinase. Diaphragm glycogen levels were reduced by more than 50% in rats fasted for 24 hours and were significantly increased upon refeeding compared to fed rats. The results indicate that the nutritional state can modulate the sensitivity of the interconverting system for phosphorylase. It is suggested that this modulation might depend upon fatty acid metabolism.  相似文献   

20.
The activity of pyruvate kinase from the isolated rat hepatocyte was studied under conditions which allow investigation into the hormonal regulation of the enzyme. Incubating hepatocytes from fed or fasted rats with 1 μm glucagon gives approximately 60% inhibition of the enzyme activity determined at 1.6 mm P-enolpyruvate. A good correlation between the regulation of pyruvate kinase and lactate formation from 10 mm dihydroxyacetone is observed in hepatocytes from fasted rats. When hepatocytes are incubated in a Krebs-Ringer phosphate buffer, the inhibition of the pyruvate kinase activity by 1 μm glucagon is not accompanied by a marked inhibition of lactate production from fructose. Half-maximal regulation is observed at 0.26 ± 0.02 nm glucagon and 0.37 ± 0.05 nm glucagon for the enzyme and lactate formation from dihydroxyacetone respectively. Incubating hepatocytes with 10 mm l-alanine enhances inhibition of pyruvate kinase by physiological concentrations of glucagon, lowering the half-maximally effective concentration of glucagon from 0.3 nm to approximately 0.1 nm. A small but consistent inhibition of pyruvate kinase by 10 μm epinephrine is also observed and this inhibition is enhanced by 0.5 mm theophylline and by 10 mm l-alanine. The inhibition of pyruvate kinase by epinephrine both in the absence and presence of theophylline is blocked by the α-adrenergic antagonist phenoxybenzamine. The β-adrenergic blocker propranolol has no influence on the inhibition of the enzyme by epinephrine. Adenosine 3′:5′-monophosphate, N6O2-dibutyryl adenosine 3′:5′-monophosphate, and guanosine 3′:5′-monophosphate also inhibit glycolysis from dihydroxyacetone and modulate pyruvate kinase activity in hepatocytes from fasted rats. Oleate, ethanol, and 3-hydroxybutyrate inhibit dihydroxyacetone glycolysis, but they do not influence the activity of pyruvate kinase. The divalent metal ionophore A23187 slightly stimulates lactate synthesis from dihydroxyacetone, but it has no influence on pyruvate kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号