首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fragment of DNA carrying the hitherto unisolated members of the cluster of genes (red) for biosynthesis of the red-pigmented antibiotic undecylprodigiosin of Streptomyces coelicolor A3(2) was isolated. This was done by cloning random fragments of S. coelicolor DNA into the closely related Streptomyces lividans 66 and recovering a clone that caused overproduction of undecylprodigiosin. The effect was probably due to the presence of the cloned redD gene, which functions as a positive regulator of the expression of the red cluster, activating the normally poorly expressed red genes of S. lividans. Two fragments from either end of the red cluster were cloned adjacent to each other on a low-copy-number Streptomyces vector. Double crossing-over occurring between these plasmid-borne sequences and the chromosomal copy of the same DNA in S. coelicolor led to isolation of the entire red cluster as a single cloned fragment. Isolation of antibiotic biosynthetic genes by the effects of an activator in a self-cloning experiment, and in vivo reconstitution of a large cluster of genes by homologous recombination, may turn out to be usefully generalizable procedures.  相似文献   

2.
Production of the blue-pigmented antibiotic actinorhodin is greatly enhanced in Streptomyces lividans and Streptomyces coelicolor by transformation with a 2.7-kb DNA fragment from the S. coelicolor chromosome cloned on a multicopy plasmid. Southern analysis, restriction map comparisons, and map locations of the cloned genes revealed that these genes were different from other known S. coelicolor genes concerned with actinorhodin biosynthesis or its pleiotropic regulation. Computer analysis of the DNA sequence showed five putative open reading frames (ORFs), which were named ORFA, ORFB, and ORFC (transcribed in one direction) and ORFD and ORFE (transcribed in the opposite direction). Subcloning experiments revealed that ORFB together with 137 bp downstream of it is responsible for antibiotic overproduction in S. lividans. Insertion of a phi C31 prophage into ORFB by homologous recombination gave rise to a mutant phenotype in which the production of actinorhodin, undecylprodigiosin, and the calcium-dependent antibiotic (but not methylenomycin) was reduced or abolished. The nonproducing mutants were not affected in the timing or vigor or sporulation. A possible involvement of ORFA in antibiotic production in S. coelicolor is not excluded. abaA constitutes a new locus which, like the afs and abs genes previously described, pleiotropically regulates antibiotic production. DNA sequences that hybridize with the cloned DNA are present in several different Streptomyces species.  相似文献   

3.
S Horinouchi  O Hara    T Beppu 《Journal of bacteriology》1983,155(3):1238-1248
A-factor (2S-isocapryloyl-3S-hydroxymethyl-gamma-butyrolactone), an autoregulating factor originally found in Streptomyces griseus, is involved in streptomycin biosynthesis and cell differentiation in this organism. A-factor production is widely distributed among actinomycetes, including Streptomyces coelicolor A3(2) and Streptomyces lividans. A chromosomal pleiotropic regulatory gene of S. coelicolor A3(2) controlling biosynthesis of A-factor and red pigments was cloned with a spontaneous A-factor-deficient strain of S. lividans HH21 and plasmid pIJ41 as a host-vector system. The restriction endonuclease KpnI-digested chromosomal fragments were ligated into the plasmid vector and introduced by transformation into the protoplasts of strain HH21. Three red transformants thus selected were found to produce A-factor and to carry a plasmid with the same molecular weight, and a 6.4-megadalton fragment was inserted in the KpnI site of pIJ41. By restriction endonuclease mapping and subcloning, a restriction fragment (1.2 megadaltons, approximately 2,000 base pairs) bearing the gene which causes concomitant production of A-factor and red pigments was determined. The red pigments were identified by thin-layer chromatography and spectroscopy to be actinorhodin and prodigiosin, both of which are the antibiotics produced by S. coelicolor A3(2). The cloned fragment was introduced into the A-factor-negative mutants (afs) of S. coelicolor A3(2) by using pIJ702 as the vector, where it complemented one of these mutations, afsB, characterized by simultaneous loss of A-factor and red pigment production. We conclude that the cloned gene pleiotropically and positively controls the biosynthesis of A-factor, actinorhodin, and prodigiosin.  相似文献   

4.
5.
An oligonucleotide probe encoding a peptide motif conserved in all sigma factors was used to isolate a new gene, sigG, from a Streptomyces coelicolor A3(2) genomic library. The deduced protein of 263 amino acids with an M(r) of 29,422 showed the greatest similarity to the previously identified sporulation sigma factor (sigma F) of Streptomyces coelicolor, and general stress response sigma factor (sigma B) of Bacillus subtilis, mostly in domains suggested to be involved in recognition of -10 and -35 promoter regions. Southern-blot hybridization with DNA from several Streptomyces spp. revealed the presence of a similar gene in all strains tested. Disruption of the S. coelicolor sigG gene appeared to have no obvious effect on growth, morphology, differentiation, and production of pigmented antibiotic actinorhodin and undecylprodigiosin.  相似文献   

6.
7.
Abstract A DNA fragment that caused pigment production in Streptomyces lividans was isolated from a gene library of Pst I-digested chromosomal fragments of S. coelicolor A3(2). Subcloning and nucleotide sequencing proved the identity of the cloned gene to ptpA encoding a low-molecular-mass phosphotyrosine protein phosphatase. The S. lividans transformant containing ptpA on pIJ41 with a copy number of 3–4 per genome produced large amounts of undecylprodigiosin and A-factor, in addition to the pigmented antibiotic actinorhodin, whereas the transformant containing ptpA on an SCP2* derivative with a copy number of 1–2 did not. The PtpA protein produced as a fusion to the maltose binding protein in Escherichia coli showed phosphatase activity toward o -phosphotyrosine, but not toward o -phosphoserine or o -threonine. Introduction of a mutant ptpA gene encoding an inactive protein with serine instead of the 9th cysteine caused no pigmentation. Disruption of the chromosomal ptpA gene of S. coelicolor A3(2), however, appeared to cause no detectable effect on the production of the pigmented antibiotics or A-factor and the ptpA disruptants developed aerial mycelium and spores normally.  相似文献   

8.
Phosphomannose isomerases (PMIs) in bacteria and fungi catalyze the reversible conversion of D-fructose-6-phosphate to D-mannose-6-phosphate during biosynthesis of GDP-mannose, which is the main intermediate in the mannosylation of important cell wall components, glycoproteins, and certain glycolipids. In the present study, the kinetic parameters of PMI from Streptomyces coelicolor were obtained, and its function on antibiotic production and sporulation was studied. manA (SCO3025) encoding PMI in S. coelicolor was deleted by insertional inactivation. Its mutant (S. coelicolor?manA) was found to exhibit a bld-like phenotype. Additionally, S. coelicolor?manA failed to produce the antibiotics actinorhodin and red tripyrolle undecylprodigiosin in liquid media. To identify the function of manA, the gene was cloned and expressed in Escherichia coli BL21 (DE3). The purified recombinant ManA exhibited PMI activity (K(cat)/K(m) (mM(-1) s(-1) = 0.41 for D-mannose-6-phosphate), but failed to show GDP-D-mannose pyrophosphorylase [GMP (ManC)] activity. Complementation analysis with manA from S. coelicolor or E. coli resulted in the recovery of bld-like phenotype of S. coelicolor?manA. SCO3026, another ORF that encodes a protein with sequence similarity towards bifunctional PMI and GMP, was also tested for its ability to function as an alternate ManA. However, the purified protein of SCO3026 failed to exhibit both PMI and GMP activity. The present study shows that enzymes involved in carbohydrate metabolism could control cellular differentiation as well as the production of secondary metabolites.  相似文献   

9.
10.
The phosphopantetheinyl transferase genes SCO5883 (redU) and SCO6673 were disrupted in Streptomyces coelicolor. The redU mutants did not synthesize undecylprodigiosin, while SCO6673 mutants failed to produce calcium-dependent antibiotic. Neither gene was essential for actinorhodin production or morphological development in S. coelicolor, although their mutation could influence these processes.  相似文献   

11.
12.
Deletion of scbA enhances antibiotic production in Streptomyces lividans   总被引:2,自引:0,他引:2  
Antibiotic production in many streptomycetes is influenced by extracellular gamma-butyrolactone signalling molecules. In this study, the gene scbA, which had been shown previously to be involved in the synthesis of the gamma-butyrolactone SCB1 in Streptomyces coelicolor A3(2), was deleted from the chromosome of Streptomyces lividans 66. Deletion of scbA eliminated the production of the antibiotic stimulatory activity previously associated with SCB1 in S. coelicolor. When the S. lividans scbA mutant was transformed with a multi-copy plasmid carrying the gene encoding the pathway-specific activator for either actinorhodin or undecylprodigiosin biosynthesis, production of the corresponding antibiotic was elevated significantly compared to the corresponding scbA(+) strain carrying the same plasmid. Consequently, deletion of scbA may be useful in combination with other strategies to construct host strains capable of improved bioactive metabolite production.  相似文献   

13.
14.
Streptomyces coelicolor A3(2) bldB mutants are blocked in the formation of aerial hyphae. A phage library of wild-type S. coelicolor DNA was used to isolate recombinant phages which restore wild-type morphological development to several bldB mutants. Of several mutations, one, bld-28, previously mapped at bldB was not complemented by the cloned region, indicating that the bldB locus is composed of at least two distinct genes. Partial localization of bldB-complementing activity showed that a 1.5 kb fragment is sufficient for complementation of the bld-15 mutation whereas bld-17 requires the same region as well as additional sequences. Under stringent conditions, genomic DNA hybridizing to the cloned sequences was absent from other Streptomyces species, including the closely related Streptomyces lividans 66. DNA sequences causing marked plasmid structural instability in S. coelicolor, but not in S. lividans, are also located in this region.  相似文献   

15.
The last step of proline biosynthesis is typically catalysed by the enzyme Δ(1)-pyrroline-5-carboxylate reductase, encoded by the proC gene. Complete genome sequencing of Streptomyces coelicolor, a soil-dwelling Gram-positive bacterium that uses proline as a precursor for synthesis of prodiginine, revealed a single copy of this gene. Unexpectedly, disruption of this proC homologue (Sco3337) in S. coelicolor M145 yielded a prototrophic strain, yet the reductase activity of Sco3337 was confirmed by complementation of an Escherichia coli proC mutant. Multicopy proC within different genetic contexts elicited a transient production of prodiginines, which showed differential production kinetics of the two most common forms of this natural product produced by S. coelicolor, i.e. streptorubin B (cyclic) and undecylprodigiosin (linear). The metabolic and evolutionary implications of these observations are discussed.  相似文献   

16.
17.
Streptomyces coelicolor produces four genetically and structurally distinct antibiotics in a growth-phase-dependent manner. S. coelicolor mutants globally deficient in antibiotic production (Abs(-) phenotype) have previously been isolated, and some of these were found to define the absB locus. In this study, we isolated absB-complementing DNA and show that it encodes the S. coelicolor homolog of RNase III (rnc). Several lines of evidence indicate that the absB mutant global defect in antibiotic synthesis is due to a deficiency in RNase III. In marker exchange experiments, the S. coelicolor rnc gene rescued absB mutants, restoring antibiotic production. Sequencing the DNA of absB mutants confirmed that the absB mutations lay in the rnc open reading frame. Constructed disruptions of rnc in both S. coelicolor 1501 and Streptomyces lividans 1326 caused an Abs(-) phenotype. An absB mutation caused accumulation of 30S rRNA precursors, as had previously been reported for E. coli rnc mutants. The absB gene is widely conserved in streptomycetes. We speculate on why an RNase III deficiency could globally affect the synthesis of antibiotics.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号