首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Plant morphology is specified by leaves and flowers, and the shoot apical meristem (SAM) defines the architecture of plant leaves and flowers. Here, we reported the characterization of a soybean KNOX gene GmKNT1, which was highly homologous to Arabidopsis STM. The GmKNT1 was strongly expressed in roots, flowers and developing seeds. Its expression could be induced by IAA, ABA and JA, but inhibited by GA or cytokinin. Staining of the transgenic plants overexpressing GmKNT1-GUS fusion protein revealed that the GmKNT1 was mainly expressed at lobe region, SAM of young leaves, sepal and carpel, not in seed and mature leaves. Scanning electron micros- copy (SEM) disclosed multiple changes in morphology of the epidermal cells and stigma. The transgenic Arabidopsis plants overexpress- ing the GmKNT1 showed small and lobed leaves, shortened internodes and small clustered inflorescence. The lobed leaves might result from the function of the meristems located at the boundary of the leaf. Compared with wild type plants, transgenic plants had higher ex- pression of the SAM-related genes including the CUP, WUS, CUC1, KNAT2 and KNAT6. These results indicated that the GmKNT1 could affect multiple aspects of plant growth and development by regulation of downstream genes expression.  相似文献   

4.
5.
Arabidopsis does not support the growth and asexual reproduction of the barley pathogen, Blumeria graminis f. sp. hordei Bgh). A majority of germlings fail to penetrate the epidermal cell wall and papillae. To gain additional insight into this interaction, we determined whether the salicylic acid (SA) or jasmonate (JA)/ethylene (ET) defence pathways played a role in blocking barley powdery mildew infections. Only the eds1 mutant and NahG transgenics supported a modest increase in penetration success by the barley powdery mildew. We also compared the global gene expression patterns of Arabidopsis inoculated with the non-host barley powdery mildew to those inoculated with a virulent, host powdery mildew, Erysiphe cichoracearum. Genes repressed by inoculations with non-host and host powdery mildews relative to non-inoculated control plants accounted for two-thirds of the differentially expressed genes. A majority of these genes encoded components of photosynthesis and general metabolism. Consistent with this observation, Arabidopsis growth was inhibited following inoculation with Bgh, suggesting a shift in resource allocation from growth to defence. A number of defence-associated genes were induced during both interactions. These genes likely are components of basal defence responses, which do not effectively block host powdery mildew infections. In addition, genes encoding defensins, anti-microbial peptides whose expression is under the control of the JA/ET signalling pathway, were induced exclusively by non-host pathogens. Ectopic activation of JA/ET signalling protected Arabidopsis against two biotrophic host pathogens. Taken together, these data suggest that biotrophic host pathogens must either suppress or fail to elicit the JA/ET signal transduction pathway.  相似文献   

6.
Both jasmonic acid (JA) and its methyl ester, methyl jasmonate (MeJA), are thought to be significant components of the signaling pathway regulating the expression of plant defense genes in response to various stresses. JA and MeJA are plant lipid derivatives synthesized from [alpha]-linolenic acid by a lipoxygenase-mediated oxygenation leading to 13-hydroperoxylinolenic acid, which is subsequently transformed by the action of allene oxide synthase (AOS) and additional modification steps. AOS converts lipoxygenase-derived fatty acid hydroperoxide to allene epoxide, which is the precursor for JA formation. Overexpression of flax AOS cDNA under the regulation of the cauliflower mosaic virus 35S promoter in transgenic potato plants led to an increase in the endogenous level of JA. Transgenic plants had six- to 12-fold higher levels of JA than the nontransformed plants. Increased levels of JA have been observed when potato and tomato plants are mechanically wounded. Under these conditions, the proteinase inhibitor II (pin2) genes are expressed in the leaves. Despite the fact that the transgenic plants had levels of JA similar to those found in nontransgenic wounded plants, pin2 genes were not constitutively expressed in the leaves of these plants. Transgenic plants with increased levels of JA did not show changes in water state or in the expression of water stress-responsive genes. Furthermore, the transgenic plants overexpressing the flax AOS gene, and containing elevated levels of JA, responded to wounding or water stress by a further increase in JA and by activating the expression of either wound- or water stress-inducible genes. Protein gel blot analysis demonstrated that the flax-derived AOS protein accumulated in the chloroplasts of the transgenic plants.  相似文献   

7.
Cytosolic free Ca2+ serves as an important second messenger participating in signal transduction of various environmental stresses. However, molecular bases for the plasma membrane Ca2+ influx and its regulation remain largely unknown. We here identified a gene (OsTPC1) encoding a putative voltage-gated Ca2+ channel from rice, ubiquitously expressed in mature leaves, shoots and roots as well as in cultured cells. OsTPC1 rescued the Ca2+ uptake activity and growth rate of a yeast mutant cch1. To elucidate its physiological roles, we generated transgenic rice plants and cultured cells overexpressing OsTPC1 mRNA. Furthermore, a retrotransposon (Tos17) insertional knockout mutant of OsTPC1 was isolated. OsTPC1-overexpressing cells showed hypersensitivity to excess Ca2+ but higher growth rate under Ca2+ limitation, while growth of the OsTPC1-knockout cultured cells was less sensitive to extracellular free Ca2+ concentration, suggesting that OsTPC1 has Ca2+ transport activity across the plasma membrane. OsTPC1-overexpressing plants showed reduced growth and abnormal greening of roots. Growth of Ostpc1 seedlings was comparable to the control on agar plates, while significantly reduced in adult plants. These results suggest that OsTPC1 functions as a Ca2+ -permeable channel involved in the regulation of growth and development.  相似文献   

8.
We have identified a homolog of the mammalian ionotropic glutamate receptor genes in Arabidopsis thaliana (AtGluR2). This gene was found to alter Ca2+ utilization when overexpressed in A. thaliana. These transgenic plants displayed symptoms of Ca2+ deficiency, including browning and death of the shoot apex, necrosis of leaf tips, and deformation of leaves. Supplementation with Ca2+ alleviated these phenotypes. Overall levels of Ca2+ in tissues of control plants were not significantly different from those of transgenic plants, suggesting that overexpression of the AtGluR2 gene did not affect Ca2+ uptake. However, the relative growth yield as a function of Ca2+ levels revealed that the critical deficiency content of Ca2+ in transgenic plants was three times higher than that of control plants. The transgenic plants also exhibited hypersensitivity to Na+ and K+ ionic stresses. The ion hypersensitivity was ameliorated by supplementation with Ca2+. The results showed that overexpression of the AtGluR2 gene caused reduced efficiency of Ca2+ utilization in the transgenic plants. The promoter of the AtGluR2 gene was active in vascular tissues, particularly in cells adjacent to the conducting vessels. This suggests that AtGluR2 encodes a functional channel that unloads Ca2+ from the xylem vessels. The results together suggest that appropriate expression of the AtGluR2 protein may play critical roles in Ca2+ nutrition by controlling the ion allocation among different Ca2+ sinks both during normal development and during adaptation to ionic stresses.  相似文献   

9.
Song WY  Martinoia E  Lee J  Kim D  Kim DY  Vogt E  Shim D  Choi KS  Hwang I  Lee Y 《Plant physiology》2004,135(2):1027-1039
Cadmium (Cd) is a widespread pollutant that is toxic to plant growth. However, only a few genes that contribute to Cd resistance in plants have been identified. To identify additional Cd(II) resistance genes, we screened an Arabidopsis cDNA library using a yeast (Saccharomyces cerevisiae) expression system employing the Cd(II)-sensitive yeast mutant ycf1. This screening process yielded a small Cys-rich membrane protein (Arabidopsis plant cadmium resistance, AtPcrs). Database searches revealed that there are nine close homologs in Arabidopsis. Homologs were also found in other plants. Four of the five homologs that were tested also increased resistance to Cd(II) when expressed in ycf1. AtPcr1 localizes at the plasma membrane in both yeast and Arabidopsis. Arabidopsis plants overexpressing AtPcr1 exhibited increased Cd(II) resistance, whereas antisense plants that showed reduced AtPcr1 expression were more sensitive to Cd(II). AtPcr1 overexpression reduced Cd uptake by yeast cells and also reduced the Cd contents of both yeast and Arabidopsis protoplasts treated with Cd. Thus, it appears that the Pcr family members may play an important role in the Cd resistance of plants.  相似文献   

10.
We obtained 32K full-length cDNA sequence data from the rice full-length cDNA project and performed a homology search against NCBI GenBank data. We have also searched homologs of Arabidopsis and other plants' genes with the databases. Comparative analysis of calcium ion transport proteins revealed that the genes specific for muscle and nerve calcium signal transduction systems (VDCC, IP3 receptor, ryanodine receptor) are very different in animals and plants. In contrast, Ca elements with basic functions in cell responses (CNGC, iGlu receptor, Ca(2+)ATPase, Ca2+/Na(+)-K+ ion exchanger) are basically conserved between plants and animals. We also performed comparative analyses of calcium ion binding and/or controlling signal transduction proteins. Many genes specific for muscle and nerve tissue do not exist in plants. However, calcium ion signal transduction genes of basic functions of cell homeostasis and responses were well conserved; plants have developed a calcium ion interacting system that is more direct than in animals. Many species of plants have specifically modified calcium ion binding proteins (CPK, CRK), Ca2+/phospholipid-binding domains, and calcium storage proteins.  相似文献   

11.
12.
In plant cells, Ca(2+) is required for both structural and biophysical roles. In addition, changes in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) orchestrate responses to developmental and environmental signals. In many instances, [Ca(2+)](cyt) is increased by Ca(2+) influx across the plasma membrane through ion channels. Although the electrophysiological and biochemical characteristics of Ca(2+)-permeable channels in the plasma membrane of plant cells are well known, genes encoding putative Ca(2+)-permeable channels have only recently been identified. By comparing the tissue expression patterns and electrophysiology of Ca(2+)-permeable channels in the plasma membrane of root cells with those of genes encoding candidate plasma membrane Ca(2+) channels, the genetic counterparts of specific Ca(2+)-permeable channels can be deduced. Sequence homologies and the physiology of transgenic antisense plants suggest that the Arabidopsis AtTPC1 gene encodes a depolarisation-activated Ca(2+) channel. Members of the annexin gene family are likely to encode hyperpolarisation-activated Ca(2+) channels, based on their corresponding occurrence in secretory or elongating root cells, their inhibition by La(3+) and nifedipine, and their increased activity as [Ca(2+)](cyt) is raised. Based on their electrophysiology and tissue expression patterns, AtSKOR encodes a depolarisation-activated outward-rectifying (Ca(2+)-permeable) K(+) channel (KORC) in stelar cells and AtGORK is likely to encode a KORC in the plasma membrane of other Arabidopsis root cells. Two candidate gene families, of cyclic-nucleotide gated channels (CNGC) and ionotropic glutamate receptor (GLR) homologues, are proposed as the genetic correlates of voltage-independent cation (VIC) channels.  相似文献   

13.
Using the full-length cDNA overexpressor (FOX) gene-hunting system, we have generated 130 Arabidopsis FOX-superroot lines in bird's-foot trefoil (Lotus corniculatus) for the systematic functional analysis of genes expressed in roots and for the selection of induced mutants with interesting root growth characteristics. We used the Arabidopsis-FOX Agrobacterium library (constructed by ligating pBIG2113SF) for the Agrobacterium-mediated transformation of superroots (SR) and the subsequent selection of gain-of-function mutants with ectopically expressed Arabidopsis genes. The original superroot culture of L. corniculatus is a unique host system displaying fast root growth in vitro, allowing continuous root cloning, direct somatic embryogenesis and mass regeneration of plants under entirely hormone-free culture conditions. Several of the Arabidopsis FOX-superroot lines show interesting deviations from normal growth and morphology of roots from SR-plants, such as differences in pigmentation, growth rate, length or diameter. Some of these mutations are of potential agricultural interest. Genomic PCR analysis revealed that 100 (76.9%) out of the 130 transgenic lines showed the amplification of single fragments. Sequence analysis of the PCR fragments from these 100 lines identified full-length cDNA in 74 of them. Forty-three out of 74 full-length cDNA carried known genes. The Arabidopsis FOX-superroot lines of L. corniculatus, produced in this study, expand the FOX hunting system and provide a new tool for the genetic analysis and control of root growth in a leguminous forage plant.  相似文献   

14.
Ionotropic glutamate receptors (iGluRs) play important roles in neurotransmission in animals. There is growing evidence that iGluRs also play important roles in plants. Using a chemical genetics approach, which combined a pH-homeostasis mutant of Arabidopsis thaliana (de-etiolated3), several different iGluR agonists, molecular modelling, and reporter gene expression in transgenic plants, we provide evidence that iGluR agonism can induce dramatic changes in plant development and metabolism. Systematic hypothesis testing revealed a signalling circuit that integrates amino acid and sugar signals to affect elongation growth and the deposition of carbon into starch and lignins. The data show that aminoglycoside antibiotics, such as kanamycin, and polyamines impinge upon this circuit. These findings provide a mechanism for the conversion of amino acid and sugar signals into an appropriate response at the gene expression level, and underline the similarities in iGluR agonism between animals and plants.  相似文献   

15.
16.
We performed a genealogical analysis of the ionotropic glutamate receptor (iGluR) gene family, which includes the animal iGluRs and the newly isolated glutamate receptor-like genes (GLR) of plants discovered in Arabidopsis. Distance measures firmly placed the plant GLR genes within the iGluR clade as opposed to other ion channel clades and indicated that iGluRs may be a primitive signaling mechanism that predated the divergence of animals and plants. Moreover, phylogenetic analyses using both parsimony and neighbor joining indicated that the divergence of animal iGluRs and plant GLR genes predated the divergence of iGluR subtypes (NMDA vs. AMPA/KA) in animals. By estimating the congruence of the various glutamate receptor gene regions, we showed that the different functional domains, including the two ligand-binding domains and the transmembrane regions, have coevolved, suggesting that they assembled together before plants and animals diverged. Based on residue conservation and divergence as well as positions of residues with respect to functional domains of iGluR proteins, we attempted to examine structure-function relationships. This analysis defined M3 as the most highly conserved transmembrane domain and identified potential functionally important conserved residues whose function can be examined in future studies.  相似文献   

17.
18.
Systemin is an important mediator of wound-induced defense gene activation in tomato plants, and it elicits a rapid alkalinization of the growth medium of cultured Lycopersicon peruvianum cells. A possible mechanistic link between proton fluxes across the plasma membrane and the induction of defense genes was investigated by modulating plasma membrane H+-ATPase activity. Inhibitors of H+-ATPase (erythrosin B, diethyl stilbestrol, and vanadate) were found to alkalinize the growth medium of L. peruvianum cell cultures and to induce wound response genes in whole tomato plants. Conversely, an activator of the H+-ATPase (fusicoccin) acidified the growth medium of L. peruvianum cell cultures and suppressed systemin-induced medium alkalinization. Likewise, in fusicoccin-treated tomato plants, the wound- and systemin-triggered accumulation of wound-responsive mRNAs was found to be suppressed. However, fusicoccin treatment of tomato plants led to the accumulation of salicylic acid and the expression of pathogenesis-related genes. Apparently, the wound and pathogen defense signaling pathways are differentially regulated by changes in the proton electrochemical gradient across the plasma membrane. In addition, alkalinization of the L. peruvianum cell culture medium was found to depend on the influx of Ca2+ and the activity of a protein kinase. Reversible protein phosphorylation was also shown to be involved in the induction of wound response genes. The plasma membrane H+-ATPase as a possible target of a Ca2+-activated protein kinase and its role in defense signaling are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号