共查询到20条相似文献,搜索用时 0 毫秒
1.
A mutant of Klebsiella aerogenes lacking glutamate synthase activity (asm-200) is blocked in only one pathway of glutamate synthesis and can still use glutamate dehydrogenase to produce glutamate when ammonia in sufficient concentration, i.e., higher than 1 mM, is provided in the medium. However, a mutant that has neither glutamate synthase nor glutamate dehydrogenase activities (asm-200, gdhD1) requires glutamate. Transductants obtained by phage grown on wild-type cells of this double mutant, selected on medium containing less than 1 mM ammonia, regain glutamate synthase but not glutamate dehydrogenase. Surprisingly, these gdhD1 transductants grow as well in a variety of media as does a strain with glutamate dehydrogenase activity. Furthermore, transductions with these and other mutants indicate that the genes encoding glutamate synthase, glutamate dehydrogenase, glutamine synthetase, and citrate synthase are not closely linked. 相似文献
2.
Glutamine synthetase of Klebsiella aerogenes: genetic and physiological properties of mutants in the adenylylation system. 总被引:3,自引:14,他引:3
下载免费PDF全文

Mutations resulting in defects in the adenylylation system of glutamine synthetase (GS) affect the expression of glnA, the structural gene for GS. Mutants with lesions in glnB are glutamine auxotrophs and contain repressed levels of highly adenylylated GS. Glutamine-independent revertants of the glnB3 mutant have acquired an additional mutation at the glnE site. The glnE54 mutant is incapable of adenylylating GS and produces high levels of enzyme, even when ammonia is present in the growth medium. The fact that mutations in glnB and glnE simultaneously disturb both the normal adenylylation and repression patterns of GS in Klebsiella aerogenes indicates that the adenylylation system, or adenylylation state, of GS is critical for the regulation of synthesis of GS. 相似文献
3.
Purification and properties of Klebsiella aerogenes D-arabitol dehydrogenase. 总被引:9,自引:0,他引:9
下载免费PDF全文

An Escherichia coli K12 strain was constructed that synthesized elevated quantities of Klebsiella aerogenes D-arabitol dehydrogenase; the enzyme accounted for about 5% of the soluble protein in this strain. Some 280 mg of enzyme was purified from 180 g of cell paste. The purified enzyme was active as a monomer of 46,000 mol.wt. The amino acid composition and kinetic constants of the enzyme for D-arabitol and D-mannitol are reported. The apparent Km for D-mannitol was more than 3-fold that for D-arabitol, whereas the maximum velocities with both substrates were indistinguishable. The enzyme purified from the E. coli K12 construct was indistinguishable by the criteria of molecular weight, electrophoretic mobility in native polyacrylamide gel and D-mannitol/D-arabitol activity ratio from D-arabitol dehydrogenase synthesized in wild-type K. aerogenes. Purified D-arabitol dehydrogenase showed no immunological cross-reaction with K. aerogenes ribitol dehydrogenase. During electrophoresis in native polyacrylamide gels, oxidation by persulphate catalysed the formation of inactive polymeric forms of the enzyme. Dithiothreitol and pre-electrophoresis protected against this polymerization. 相似文献
4.
Regulation of glutamine synthetase by regulatory protein PII in Klebsiella aerogenes mutants lacking adenylyltransferase. 总被引:1,自引:3,他引:1
下载免费PDF全文

A mutation of Klebsiella aerogenes causing production of an altered PII regulatory protein which stimulates overadenylylation of glutamine synthetase and also prevents its derepression was combined with mutations abolishing the activity of adenylyltransferase. The results support the idea that PII plays a role in the regulation of the level of glutamine synthetase which is independent of its interaction with adenylyltransferase. 相似文献
5.
Helmut Bertrand Frank E. Nargang Richard A. Collins Cheryl A. Zagozeski 《Molecular & general genetics : MGG》1977,153(3):247-257
Summary We have isolated twenty-six nuclear, singlegene cytochrome-deficient mutants of Neurospora crassa as an initial step toward the study of the structural components and regulatory mechanisms involved in the biogenesis of the mitochondrial cytochrome system. These mutants, together with two previously described mutants, cyt-1 and cyt-2, have been classified into six distinct groups on the basis of cytochrome phenotype: a) cytochrome aa
3
deficiency (due to mutations affecting loci designated cya); b) cytochrome b deficiency (cyb-1 locus); c) cytochrome b deficiency with a partial deficiency of cytochrome aa
3
(cyb-2 locus); d) deficiency of both cytochromes aa
3
and b (cyt loci); e) deficiency of both cytochromes aa
3
and c (cyt-2 locus); and f) partial deficiency of cytochromes aa
3
and c (cyt-12 locus).Four of seven mutations affecting cya loci have been mapped and are located on linkage groups I, II, V, and VI. It is not yet known whether these genes code for structural components of cytochrome oxidase or have a regulatory function that affects synthesis or assembly of the enzyme. The cyb-1 and cyb-2 genes are located on linkage groups V and VI, respectively, and appear to code for regulatory elements that control the biogenesis of cytochromes b and aa
3
. The positions of the cyt mutations that cause a simultaneous deficiency of cytochromes aa
3
and b are dispersed throughout the genome, except for two gene clusters on the left arm of linkage group I. Some of these mutants may be deficient in mitochondrial protein synthesis. Two mutations, cyt-2 and cyt-12, are located on linkage groups VI and II, respectively, and appear to affect genes that code for components of a regulatory system that controls the biogenesis of cytochromes aa
3
and c. 相似文献
6.
A mutant strain of Klebsiella aerogenes was constructed and, when incubated anaerobically with L-fucose and glycerol, synthesized and excreted a novel methyl pentitol, 6-deoxy L-talitol. The mutant was constitutive for the synthesis of L-fucose isomerase but unable to synthesize L-fuculokinase activity. Thus, it could convert the L-fucose to L-fuculose but was incapable of phosphorylating L-fuculose to L-fuculose 1-phosphate. The mutant was also constitutive for the synthesis of ribitol dehydrogenase, and in the presence of sufficient reducing power this latter enzyme catalyzed the reduction of the L-fuculose to 6-deoxy L-talitol. The reducing equivalents required for this reaction were generated by the oxidation of glycerol to dihydroxyacetone with an anaerobic glycerol dehydrogenase. The parent strain of K. aerogenes was unable to utilize the purified 6-deoxy L-talitol as a sole source of carbon and energy for growth; however, mutant could be isolated which had gained this ability. Such mutants were found to be constitutive for the synthesis of ribitol dehydrogenase and were thus capable of oxidizing 6-deoxy L-talitol to L-fuculose. Further metabolism of L-fuculose was shown by mutant analysis to be mediated by the enzymes of the L-fucose catabolic pathway. 相似文献
7.
The ribitol dehydrogenase gene was cloned from wild-type Klebsiella aerogenes and also from a transducing phage lambda prbt which expresses the rbt operon constitutively. The coding sequence for 249 amino acids is separated from the following D-ribulokinase gene by 31 base pairs containing three stop codons, one of which overlaps the ribosome binding site for D-ribulokinase. Three residues in the amino acid sequence differ from that predicted from the DNA sequence: Asp-212 for Asn-212 is probably a protein sequencing error, but -Ala-Val- for -Ser-Ser- at 146-147 appears to be a 'neutral mutation' that may have arisen during prolonged chemostat selection of a strain that superproduces the enzyme from which the protein sequence was determined. 相似文献
8.
R. W. J. Hommes B. van Hell P. W. Postma O. M. Neijssel D. W. Tempest 《Archives of microbiology》1985,143(2):163-168
In order to assess the functional significance of the quinoprotein glucose dehydrogenase recently found to be present in K+-limited Klebsiella aerogenes, a broad study was made of the influence of specific environmental conditions on the cellular content of this enzyme. Whereas high activities were manifest in cells from glucose containing chemostat cultures that were either potassium- or phosphate-limited, only low activities were apparent in cells from similar cultures that were either glucose-, sulphate- or ammonia-limited. With these latter two cultures, a marked increase in glucose dehydrogenase activity was observed when 2,4-dinitrophenol (1 mM end concentration) was added to the growth medium. These results suggested that the synthesis of glucose dehydrogenase is not regulated by the level of glucose in the growth medium, but possibly by conditions that imposed an energetic stress upon the cells. This conclusion was further supported by a subsequent finding that K+-limited cells that were growing on glycerol also synthesized substantial amounts of glucose dehydrogenase.The enzyme was found to be membrane associated, and preliminary evidence has been obtained that it is located on the periplasmic side of the cytoplasmic membrane and functionally linked to the respiratory chain. This structural and functional orientation is consistent with glucose dehydrogenase serving as a low impedance energy generating system.Abbreviations
D
dilution rate
- DNP
2,4-dinitrophenol
- PQQ
2,7,9-tricarboxy-1H-pyrrolo(2,3-f)quinoline-4,5-dione
- PTS
phosphoenolpyruvate: glucose phosphotransferase
- WB
Wurster's Blue 相似文献
9.
Isolation of Klebsiella aerogenes mutants cis-dominant for glutamine synthetase expression 总被引:2,自引:3,他引:2
下载免费PDF全文

We have isolated three strains of Klebsiella aerogenes that failed to show repression of glutamine synthetase even when grown under the most repressing conditions for the wild-type strain. These mutant strains were selected as glutamine-independent derivatives of a strain that is merodiploid for the glnA region and contains a mutated glnF allele. The mutation responsible for the Gln+ phenotype in each strain was tightly linked to glnA, the structural gene for glutamine synthetase, and was dominant to the wild-type allele. These mutations are probably lesions in the control region of the glnA gene, since each mutation was cis-dominant for constitutive expression of the enzyme in hybrid merodiploid strains. Strains harboring this class of mutations were unable to produce a high level of glutamine synthetase unless they also contained an intact glnF gene, and unless cells were grown in derepressing medium. This study supports the idea that the glnA gene is regulated both positively and negatively, and that the deoxyribonucleic acid sites critical for positive control and negative control are functionally distinct. 相似文献
10.
Ribitol dehydrogenase of Klebsiella aerogenes. Sequence and properties of wild-type and mutant strains. 总被引:3,自引:0,他引:3
下载免费PDF全文

Evidence is presented for the sequence of 249 amino acids in ribitol dehydrogenase-A from Klebsiella aerogenes. Continuous culture on xylitol yields strains that superproduce 'wild-type' enzyme but mutations appear to have arisen in this process. Other strains selected by such continuous culture produce enzymes with increased specific activity for xylitol but without loss of ribitol activity. One such enzyme, ribitol dehydrogenase-D, has Pro-196 for Gly-196. Another, ribitol dehydrogenase-B, has a different mutation. 相似文献
11.
Effect of Methionine Sulfoximine and Methionine Sulfone on Glutamate Synthesis in Klebsiella aerogenes 总被引:13,自引:23,他引:13
Jean E. Brenchley 《Journal of bacteriology》1973,114(2):666-673
At least two pathways exist in Klebsiella aerogenes for glutamate synthesis. A mutant blocked in one pathway due to the loss of glutamate dehydrogenase (gltD) does not require glutamate and has the same growth characteristics as the parent strain in most media; however, its growth is inhibited by the analogues methionine sulfoximine and methionine sulfone. Wild-type Klebsiella is resistant to 0.1 M methionine sulfoximine or methionine sulfone, whereas the gltD mutant is sensitive to 1 mM concentrations. Either glutamate or glutamine is effective in overcoming this inhibition. Activities of both glutamine synthetase and glutamate synthetase, two enzymes involved in the second pathway of glutamate synthesis, are inhibited by methionine sulfoximine and methionine sulfone. The primary effect of methionine sulfoximine appears to be the prevention of glutamine production necessary for subsequent glutamate synthesis via glutamate synthetase enzyme. 相似文献
12.
Summary Mutants of Escherichia coli resistant to nitrofurantoin have been isolated. The mutations, designated nfnA and nfnB were introduced individually into a multiply auxotrophic E. coli F– strain and mapped by conjugation and transduction. nfnA is located at 79.8 min and nfnB at 13.0 min on the E. coli chromosome. 相似文献
13.
We have isolated a temperature-sensitive mutant of Klebsiella aerogenes unable to grow aerobically at 42 C in standard glucose minimal medium containing 0.03 M ammonium sulfate as a source of nitrogen. This strain, MK810, will grow at this temperature in significantly lower concentrations of ammonia (1 mM) or when ammonia is replaced by a growth rate-limiting source of nitrogen such as histidine or glutamate. A detailed physiological characterization and preliminary biochemical tests support the contention that the mutant has an altered alpha-ketoglutarate dehydrogenase that at the restrictive condition fails to manufacture sufficient succinyl-coenzyme A. We explain the ammonia sensitivity by the dual role of alpha-ketoglutarate as substrate for the formation of succinyl-coenzyme A and glutamate. A defect in the enzyme necessary for the production of succinyl-coenzyme A makes ammonia an overly effective competitor for alpha-ketoglutarate. 相似文献
14.
In vivo inactivation of glycerol dehydrogenase in Klebsiella aerogenes: properties of active and inactivated proteins. 总被引:1,自引:6,他引:1
下载免费PDF全文

Glycerol:oxidized nicotinamide adenine dinucleotide (NAD+) 2-oxidoreductase (EC 1.1.1.6), an inducible enzyme for anaerobic glycerol catabolism in Klebsiella aerogenes, was purified and found to have a molecular weight of 79,000 by gel electrophoresis. The protein seemed to be enzymatically active either as a dimer of a 40,000-dalton peptide at pH 8.6 or as a tetramer of 160,000 molecular weight at pH 7.0. The enzyme activity was present at high levels in cells growing anaerobically on glycerol, but disappeared with a half-life of about 45 min if molecular oxygen was introduced to the culture. In contrast, no such phenomenon occurred with dihydroxyacetone kinase activity, the second enzyme in the pathway. Immunochemical analysis showed that the inactivation of the oxidoreductase did not involve degradation of the protein. Furthermore, subunits of the active and inactive forms of the enzyme were indistinguishable in size on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and had similar isoelectric points (pH 4.7). Inactivation did, however, alter the gel filtration properties of the enzyme protein and, more importantly, reduced its affinity for the dye Cibacron F3GA and the coenzyme NAD+. 相似文献
15.
A mass-spectrometric sequence study of the enzyme ribitol dehydrogenase from Klebsiella aerogenes 总被引:4,自引:6,他引:4
Howard R. Morris Dudley H. Williams Graeme G. Midwinter Brian S. Hartley 《The Biochemical journal》1974,141(3):701-713
The first detailed results of the application of a low-resolution mixture analysis approach to the sequence analysis of an enzyme, ribitol dehydrogenase, are given. Examples of the interpretation of the spectra of peptide mixtures derived from this protein are described. Evidence for new fragmentation patterns observed is reported, together with an explanation of the generation of ambiguous sequences by use of a low-specificity enzyme, thermolysin. The overall sequencing strategy evolved is assessed. 相似文献
16.
D. Segura C. Santana R. Gosh L. Escalante S. Sanchez 《Applied microbiology and biotechnology》1997,48(5):615-620
In Streptomyces peucetius var. caesius, the production of anthracyclines was suppressed either by 330 mM d-glucose or 25 mM phosphate. In addition, the anthracycline doxorubicin and the glucose analogue 2-deoxyglucose inhibited
the growth of this microorganism at concentrations of 0.025 mM and 10 mM respectively. Spontaneous and induced mutants, resistant
to the action of these compounds, were isolated, tested and chosen by their ability to overproduce anthracyclines. Genetic
recombination between representative mutants was carried out by the protoplast fusion technique. Some recombinants carrying
resistance to doxorubicin, phosphate and 2-deoxyglucose produced more than 40-fold greater levels of anthracyclines than those
obtained with the parental strain. This improvement resulted in total antibiotic titres of more than 2 g/l culture medium
at 6 days of fermentation.
Received: 14 April 1997 / Received revision: 19 June 1997 / Accepted: 4 July 1997 相似文献
17.
Klebsiella aerogenes utilized arginine as the sole source of carbon or nitrogen for growth. Arginine was degraded to 2-ketoglutarate and not to succinate, since a citrate synthaseless mutant grows on arginine as the only nitrogen source. When glucose was the energy source, all four nitrogen atoms of arginine were utilized. Three of them apparently did not pass through ammonia but were transferred by transamination, since a mutant unable to produce glutamate by glutamate synthase or glutamate dehydrogenase utilized three of four nitrogen atoms of arginine. Urea was not involved as intermediate, since a unreaseless mutant did not accumulate urea and grew on arginine as efficiently as the wild-type strain. Ornithine appeared to be an intermediate, because cells grown either on glucose and arginine or arginine alone could convert arginine in the presence of hydroxylamine to ornithine. This indicates that an amidinotransferase is the initiating enzyme of arginine breakdown. In addition, the cells contained a transaminase specific for ornithine. In contrast to the hydroxylamine-dependent reaction, this activity could be demonstrated in extracts. The arginine-utilizing system (aut) is apparently controlled like the enzymes responsible for the degradation of histidine (hut) through induction, catabolite repression, and activation by glutamine synthetase. 相似文献
18.
Deoxyglucose-resistant mutants of Neurospora crassa: isolation, mapping, and biochemical characterization. 总被引:1,自引:0,他引:1
下载免费PDF全文

Neurospora crassa mutants resistant to 2-deoxyglucose have been isolated, and their mutations have been mapped to four genetic loci. The mutants have the following characteristics: (i) they are resistant to sorbose as well as to 2-deoxyglucose; (ii) they are partially or completely constitutive for glucose transport system II, glucamylase, and invertase, which are usually repressed during growth on glucose; and (iii) they synthesize an invertase with abnormal thermostability and immunological properties, suggesting altered posttranslational modification. All of these characteristics could arise from defects in the regulation of carbon metabolism. In addition, mutants with mutations at three of the loci lack glucose transport system I, which is normally synthesized constitutively by wild-type N. crassa. Although the basis for this change is not yet clear, the mutants provide a way of studying the high-affinity system II uncomplicated by the presence of the low-affinity system I. 相似文献
19.
Regulation of the galactose-inducible lac operon and the histidine utilization operons in pts mutants of Klebsiella aerogenes.
下载免费PDF全文

Galactose appears to be the physiological inducer of the chromosomal lac operon in Klebsiella aerogenes. Both lactose and galactose are poor inducers in strains having a functional galactose catabolism (gal) operon, but both are excellent inducers in gal mutants. Thus the slow growth of K. aerogenes on lactose reflects the rapid degradation of the inducer. Several pts mutations were characterized and shown to affect both inducer exclusion and permanent catabolite repression. The beta-galactosidase of pts mutants cannot be induced at all by lactose, and pts mutants appear to have a permanent and constitutive inducer exclusion phenotype. In addition, pts mutants show a reduced rate of glucose metabolism, leading to slower growth on glucose and a reduced degree of glucose-mediated permanent catabolite repression. The crr-type pseudorevertants of pts mutations relieve the constitutive inducer exclusion for lac but do not restore the full level of glucose-mediated permanent catabolite repression and only slightly weaken the glucose-mediated inducer exclusion. Except for weakening the glucose-mediated permanent catabolite repression, pts and crr mutations have no effect on expression of the histidine utilization (hut) operons. 相似文献
20.