首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We tested the hypothesis that somatostatin (SRIF) inhibits insulin secretion from an SV40 transformed hamster beta cell line (HIT cells) by an effect on the voltage-dependent Ca2+ channels and examined whether G-proteins were involved in the process. Ca2+ currents were recorded by the whole cell patch-clamp method, the free cytosolic calcium, [Ca2+]i, was monitored in HIT cells by fura-2, and cAMP and insulin secretion were measured by radioimmunoassay. SRIF decreased Ca2+ currents, [Ca2+]i, and basal insulin secretion in a dose-dependent manner over the range of 10(-12)-10(-7)M. The increase in [Ca2+]i and insulin secretion induced by either depolarization with K+ (15 mM) or by the Ca2+ channel agonist, Bay K 8644 (1 microM) was attenuated by SRIF in a dose-dependent manner over the same range of 10(-12)-10(-7) M. the half-maximal inhibitory concentrations (IC50) for SRIF inhibition of insulin secretion were 8.6 X 10(-12) M and 8.3 X 10(-11) M for K+ and Bay K 8644-stimulated secretion and 1 X 10(-10) M and 2.9 X 10(-10) M for the SRIF inhibition of the K+ and Bay K 8644-induced rise in [Ca2+]i, respectively. SRIF also attenuated the rise in [Ca2+]i induced by the cAMP-elevating agent, isobutylmethylxanthine (1 mM) in the presence of glucose. Bay K 8644, K+ and SRIF had no significant effects on cAMP levels and SRIF had no effects on adenylyl cyclase activity at concentrations lower than 1 microM. SRIF (100 nM) did not change K+ efflux (measured by 86Rb+) through ATP-sensitive K+ channels in HIT cells. SRIF (up to 1 microM) had no significant effect on membrane potential measured by bisoxonol fluorescence. Pretreatment of the HIT cells with pertussis toxin (0.1 microgram/ml) overnight abolished the effects of SRIF on Ca2+ currents, [Ca2+]i and insulin secretion implying a G-protein dependence in SRIF's actions. Thus, one mechanism by which SRIF decreases insulin secretion is by inhibiting Ca2+ influx through voltage-dependent Ca2+ channels, an action mediated through a pertussis toxin-sensitive G-protein.  相似文献   

2.
Uptake and release of Ca2+ in heavy and light fractions of fragmented sarcoplasmic reticulum (FSR) isolated from frog and rabbit skeletal muscle was studied under conditions similar to those employed in skinned muscle fiber experiments, where ATP and Mg2+ concentrations were considered to be physiological and free Ca2+ concentration was kept constant during the Ca2+ uptake and release. Ca2+ level in FSR monotonously approached a steady state level which depended only on the final experimental conditions. Heavy fractions, but not light fractions, exhibited characteristics similar to those of Ca2+-induced Ca2+ release reported in skinned fiber studies: i) the rate and steady state level of Ca2+ uptake increased with increase in free Ca2+ concentration in the reaction medium up to 10(-6) M. With further increase in free Ca2+ concentration, the steady state level of Ca2+ taken up decreased while the Ca2+ uptake rate increased. ii) The steady state Ca2+ level was decreased by caffeine but increased by procaine or ruthenium red. Parallel measurement of Ca2+-ATPase activity clearly showed that these drugs modify the Ca2+ efflux but hardly affect the Ca2+-pump activity. It was concluded that the Ca2+-induced Ca2+ release mechanism was in operation at as low as 10(-6) M free Ca2+ concentration. Treatment of FSR with 0.6 M KCl did not have any significant effect.  相似文献   

3.
Na+- and Ca2+-selective microelectrodes were made with Simon's neutral carrier ETH 227 and ETH 1001, respectively, and their properties were studied for intracellular application. The kNaK (selectivity coefficient for Na+ with respect to K+) values of the Na+-selective microelectrodes were in the range of 0.01-0.02, which is comparable to those of recessed-tip Na+-selective glass microelectrodes. The kNaMg values of the microelectrodes were approximately 0.005 so that the interference by intracellular Mg2+ levels could be negligible. The kNaCa values were approximately 2 and the Na+-selective microelectrodes were more selective to Ca2+ than Na+. This indicates that their intracellular application requires special care to handle Ca2+ interference under certain conditions. The kNaK, kNaMg, and kNaCa values did not depend significantly on the methods used for their determination or on the ion activity levels tested. The Nicolsky equation described well the microelectrode potentials in the mixed solutions of NaCl (1-100 mM) and KCl. Potential and resistance of the microelectrodes were stable for a long period and their response time was fast. The results indicate that the Na+-selective microlectrodes are suitable for measurements of intracellular Na ion activities. Ca2+-selective microelectrode potentials at Ca2+ concentrations lower than 10(-4) M changed significantly for the first 2-3 h and then became fairly stable. The rate of the potential change was dependent on the column length of the Ca2+-selective liquid filled. Potentials of the microelectrodes varied from 10-20 mV for Ca2+ between 10(-7) and 10(-6) M concentrations, which may be the cytosolic free-Ca2+ range. With the Ca2+ concentrations greater than 10(-6) M, the microelectrodes had potential changes of approximately 30 mV or greater for a tenfold change in Ca2+ concentration. The kCaK and kCaNa values were in the ranges of 10(-5)-10(-6) and 10(-4)-10(-5), respectively. The kCaMg values were approximately 10(-7). The results show that the Ca2+-selective microelectrodes can be used for measurements of cytosolic Ca ion activities.  相似文献   

4.
The relationship between fMet-Leu-Phe-induced changes in the cytosolic free Ca2+ concentration [( Ca2+]i), plasma membrane potential depolarization, and metabolic responses was studied in human neutrophils. Receptor-activated depolarization occurred both at high and resting [Ca2+]i, but was inhibited at very low [Ca2+]i. Phorbol 12-myristate 13-acetate-induced plasma membrane depolarization, on the contrary, was independent of [Ca2+]i. The threshold fMet-Leu-Phe concentration for plasma membrane depolarization (10(-8) M) was at least 1 log unit higher than that for [Ca2+]i increases (5 X 10(-10) M) and coincident with that for NADPH oxidase activation. Nearly maximal [Ca2+]i increases were elicited by 3 X 10(-9) fMet-Leu-Phe in the absence of any significant plasma membrane potential change. This observation allowed us to investigate the effects of artificially induced plasma membrane depolarization and hyperpolarization at low fMet-Leu-Phe concentrations (10(-9) to 3 X 10(-9) M) which did not perturb plasma membrane potential. Depolarizing (gramicidin D at 10(-7) to 10(-6) M or KCl at 50 mM) and hyperpolarizing (valinomycin at 4 microM) treatments had little influence on unstimulated [Ca2+]i levels, whereas fMet-Leu-Phe-induced transients were significantly altered. Gramicidin D and KCl decreased the fMet-Leu-Phe-induced [Ca2+]i increases in Ca2+-containing or in Ca2+-free media. Valinomycin, on the contrary, increased receptor-stimulated [Ca2+]i increases, and the effect was larger in the presence of extracellular Ca2+. Valinomycin also strongly potentiated secretion. It is suggested that plasma membrane depolarization in human neutrophils is a physiological feedback mechanism inhibiting receptor-dependent [Ca2+]i changes.  相似文献   

5.
The effects of the voltage-sensitive, calcium channel blocking agents, D-600 and verapamil, on twitches and K+-induced contractures were studied using frog's toe muscles. K+-contracture tension was reduced by concentrations as low as 10(-8) M and the contractures were blocked by 10(-6) M. There was no significant difference in the effects of the two drugs. Twitches were potentiated by 5 X 10(-5) M D-600 and blocked only at 3 X 10(-4) M. The latter concentration also produced contractures in the toe muscles. As shown by other workers, the higher concentration also blocks action potential production and this is probably the way in which it blocks the twitch. Raising the bathing solution Ca2+ concentration from 1.08 to 10 or 20 mM, produced only a small, inconsistent, noncompetitive antagonism of the D-600 block of K+ contractures.  相似文献   

6.
It has recently been reported that free Ca2+, a second hormonal messenger in the liver, can modulate the activity of liver glucose-6-phosphatase by inhibition (van de Werve, G. (1989) J. Biol. Chem. 264, 6033-6036) or activation (Yamagushi, M., Mori, S., and Suketa, Y. (1989) Chem. Pharm. Bull. (Tokyo) 37, 388-390). Such a controversial role for Ca2+ is reinvestigated by comparing the effect of the addition of free Ca2+ (10(-10) to 20.10(-3) M) under the form of CaCl2 or of Ca-EGTA buffers. We show that the glucose-6-phosphatase activity is: 1) increased in the presence of CaCl2 at concentrations higher than 10(-4) M and unaffected in the presence of CaCl2 at lower concentrations; 2) decreased in the presence of Ca-EGTA buffers yielding free Ca2+ concentrations higher than 10(-8) M; 3) the latter effect is not depending on free Ca2+ or free EGTA concentrations, but on Ca.EGTA complex concentration. In addition, these effects can be reproduced in the same concentration ranges by MgCl2 and Mg-EDTA buffers, respectively. It is concluded that a physiological role for free Ca2+ on the activity of liver glucose-6-phosphatase remains to be established.  相似文献   

7.
We assessed the possible effects of the volatile halogenated anesthetics halothane, enflurane, and isoflurane on Ca(2+) electrode measurements and on the Ca(2+) sensitivity of the bioluminescent protein aequorin. In Ca(2+)-EGTA buffers of different pCa values (7. 870, 6.726, 6.033, 4.974, 4.038, and 2.995) and in serial Ca(2+) dilutions (10(-4), 10(-3), and 10(-2) M), halothane, enflurane, and isoflurane each caused a concentration-dependent and reversible increase in the absolute value of the negative electrode potential. Isoflurane and enflurane had larger effects than halothane. Neither of these anesthetics changed aequorin luminescence at any pCa tested in the range 2-8. There was no potentiation or inactivation of aequorin luminescence over a period of up to 2 h. These results suggest that (1) halothane, enflurane, and isoflurane interfere with Ca(2+) electrode measurements, most likely by changing the physicochemical properties of the membrane; (2) these anesthetics do not inactivate or otherwise modify the characteristics of the reaction of Ca(2+) with aequorin; and (3) these anesthetics do not change the apparent affinity of EGTA for Ca(2+).  相似文献   

8.
Phosphorylation of several low molecular mass proteins (3.5, 17, 23 and 29kDa) was observed in rat brain mitochondria (RBM) at ATP concentration close to that in the mitochondrial matrix. Furthermore, regulatory effects of Ca2+ on phosphorylation of these proteins were investigated. Protein phosphorylation was found to be modulated by Ca2+ in the physiological concentration range (10(-8) to 10(-6)M free Ca2+). Incorporation of 32P from [gamma-32P]ATP into the 17kDa protein was dramatically increased within the 10(-7) to 10(-6)M free Ca2+ range, whereas an opposite effect was observed for the 3.5kDa polypeptide. Strong de-phosphorylation of the 3.5kDa polypeptide and enhanced 32P-incorporation into the 17 and 23kDa proteins were found with supra-threshold Ca2+ loads and these effects were eliminated or reduced in the presence of cyclosporin A, an inhibitor of Permeability Transition Pore (PTP) opening. In the presence of calmidazolium (Cmz), a calmodulin antagonist, enhanced levels of phosphorylation of the 17 and 3.5kDa polypeptides were observed and the 17kDa protein phosphorylation was suppressed by H-8, a protein kinase A inhibitor. It is concluded that Ca2+ in physiological concentrations, as a second messenger, can control phosphorylation of the low molecular mass phospoproteins in RBM, in addition to well known regulation of some Krebs cycle dehydrogenases by Ca2+. The protein phosphorylation was strongly dependent on the Ca2+-induced PTP opening.  相似文献   

9.
The ability of the Ca2+-selective microelectrode to measure fast Ca2+ transients intracellularly is reviewed. In vitro, Ca microelectrodes can respond to Ca2+ injections with time to peaks as small as 40 ms. We present methods to improve the dynamic response of Ca microelectrodes and to make Ca-buffered solutions in high ionic strength. Examples of measurements of intracellular free Ca2+ [( Ca2+]i) transients in Aplysia neurons and in Limulus photoreceptors are shown. To show the validity of those measurements, simultaneous recordings of the Arsenazo III (AIII) absorbance and of the Ca-selective electrode potential were made in voltage-clamped neurons of the abdominal ganglion of Aplysia californica. Pressure injection of AIII to a concentration of 300-500 microM induced a rise in resting [Ca2+]i; injection of higher [AIII] led to buffering of [Ca2+]i transients. Both techniques responded to changes in resting [Ca2+]i in the same direction except that AIII showed an increase in absorbance in 0 [Ca2+]o. Voltage-clamp pulses transiently increased both the AIII absorbance and the Ca2+ electrode potential. Reducing or increasing the driving force for Ca2+ entry changed the magnitude of both signals in the right direction. Examples of spatial localization of [Ca2+]i increases and Ca2+ gradients within the cytoplasm were demonstrated using the Ca electrode. The use of optical techniques to measure local [Ca2+]i changes is briefly reviewed.  相似文献   

10.
The effect of various inhibitors of DNA topoisomerase II, which has been shown to induce apoptotic cell death, on Ca2+ transport in isolated rat liver nuclei was investigated. Ca2+ uptake and release were determined with a Ca2+ electrode. The presence of aurintricarboxylic acid (ATA; 10-6 to 10-4 M), etoposide (10-4 M), genistein (10-5 and 10-4 M) or amsacrine (10-4 M) in the reaction mixture caused a significant increase in Ca2+ release from the nuclei. Also, these compounds (10-4 M) significantly inhibited Ca2+ uptake by the nuclei. However, the presence of ATA (10-5 and 10-4 M) in the enzyme reaction mixture did not significantly inhibit Ca2+-ATPase activity, which is involved in the nuclear Ca2+ uptake, in the liver nuclei, while etoposide (10-4 M), genistein (10-4 M) and amsacrine (10-4 M) appreciably decreased the enzyme activity. Meanwhile, addition of Ca2+ clearly activated DNA fragmentation in the liver nuclei. The Ca2+ activated DNA fragmentation was significantly prevented by the presence of etoposide, genistein and amsacrine with the concentrations of 10-5 and 10-4 M in the reaction mixture, although ATA (10-5 and 10-4 M) had no effect. The present study demonstrates that some apoptosis inducible compounds used can influence on Ca2+ transport system in isolated rat liver nuclei, suggesting a decrease of nuclear Ca2+ level involved in nuclear functions. (Mol Cell Biochem 166: 183-189, 1997)  相似文献   

11.
Agonist-induced changes in cytoplasmic free Ca2+ concentration [( Ca2+]i) of isolated canine gastric chief cells were evaluated by microspectrofluorometry of superfused fura-2 loaded cells. Application of high concentrations of carbachol (CCh, 10(-5) M) or cholecystokinin octapeptide (10(-8) M) resulted in biphasic Ca2+ mobilization comprising an initial large transient followed by a small sustained elevation above the prestimulation level. Submaximal concentrations of CCh (10(-6) M) or cholecystokinin (10(-9) M) led to either a transient series of large amplitude Ca2+ spike(s) or a higher frequency of sustained Ca2+ oscillations of smaller amplitude. Cholecystokinin at 10(-10) M induced only sustained Ca2+ oscillations. Elimination of Ca2+ from the medium had no immediate effect on oscillations indicating an intracellular source of Ca2+. Thus the Ca2+ signalling mode in chief cells is dependent on agonist concentrations.  相似文献   

12.
The effects of NO on Ca2+-sensitivity of vascular smooth muscle (VSM) myofilaments have been the focus of this study. Simultaneous measurements of [Ca2+]i and force were carried out in rat tail artery segments. NO, 10(-7) M, evoked a transient decrease in [Ca2+]i accompanied by sustained relaxation (45.3+/-6.3 vs. 69.45+/-7.2%, P<0.05, respectively) of VSM precontracted with K+ (70 mM), suggesting a decrease in Ca2+-sensitivity of VSM. This decrease in Ca2+-sensitivity was completely abolished by preincubation of VSM with ODQ (10(-6) M) (63.9+/-7.8% for [Ca2+]i vs. 20.5+/-8.4% for relaxation, P<0.05). Ca2+-presensitization of VSM myofilaments with PE (10(-6) M) decreased the efficacy of NO to relax VSM (44.25+/-6.9% vs. 69.45+/-7.2%, P<0.05), but increased its ability to lower [Ca2+]i (70.5+/-6.8% vs. 45.3+/-6.3%, P<0.05). Application of DTT (10(-3) M) together with ODQ (10(-6) M) to subtract possible cGMP-independent effects revealed the total suppression of both the relaxant responses and [Ca2+]i of VSM under high-K+ preactivation of VSM. The data indicate that NO not only relaxes VSM and lowers [Ca2+]i in K+-preactivated VSM, but also decreases Ca2+-sensitivity of VSM myofilaments and these effects are strongly cGMP-dependent. In PE-induced contractions of VSM, NO relaxed VSM of rat tail artery and lowered [Ca2+]i, but failed to reverse Ca2+-presensitized myofilaments. We suggest that alternative cGMP-independent effects of NO are primarily manifested via activation of K+-channels and inhibition of Ca2+ current rather than to affect relaxation. An importance of reduced SH-groups within VSM myoplasm for both relaxation and [Ca2+]i disposal evoked by NO is evident whatever Ca2+-mobilization pathways are involved.  相似文献   

13.
The effects of ethacrynic acid (ETCA) which has been known as an -SH groups inhibitor on the contractility and the Ca flux of guinea pig taenia coli were investigated. The results obtained were as follow: 1) Contractures induced by 10(-4) M ACh, or the tonic component of 150 mM K-contractures were markedly suppressed by previous treatment with a low concentration (2 X 10(-4) M) of ETCA for 40 min. Conversely with the same treatment, the phasic component of this K-contracture was only slightly suppressed. The inhibitory effects of ETCA in both cases were reversed by the repetitive washing out of ETCA from taenia coli with normal tris-buffered solution. 2) ETCA, at concentrations higher than 10(-3) M, more markedly inhibited the ACh-, and the K-contractures. In this case these inhibitions were irreversible. 3) Cysteine in an equimolar concentration of ETCA prevented the inhibitory effects of ETCA on both contractures. 4) ETCA (10(-4) M) inhibited the ACh-contracture in Ca2+-free isotonic KCl solution to approximately the same degree as that in normal solution. 5) Inhibition of ACh-contracture by ETCA in Na+-free isotonic LiCl solution was less than that in normal solution. 6) ETCA (2 X 10(-4), or 10(-3) M) markedly stimulated 45Ca efflux from taenia coli in 20 mM Ca-EGTA tris-buffered solution. 7) 45Ca efflux acceleration by ETCA in Na+-free (replaced by Li+) 20 mM Ca-EGTA tris-buffered solution was less than that in 20 mM Ca-EGTA tris-buffered solution. These results may be explained by assuming that the inhibitory effect of ETCA on ACh-contracture can be attributed to the depletion of stored intracellular Ca and the acceleration of Ca efflux as a result of ETCA treatment.  相似文献   

14.
Studies were made on the mechanism of the effect of parathyroid hormone (PTH) on the activity of (Ca2++Mg2+)-ATPase, a membrane bound Ca2+-extrusion pump enzyme from the basolateral membranes (BLM) of canine kidney (Km for free Ca2+ = 1.3 X 10(-7) M, Vmax = 200 nmol Pi/mg/min). At 1 X 10(-7) M free Ca2+, both PTH (10(-7)-10(-6) M) and cAMP (10(-6)-10(-4) M) stimulated (Ca2++Mg2+)-ATPase activity dose-dependent and their stimulatory effects were inhibited completely by 5 microM H-8, an inhibitor of cAMP-dependent protein kinase. PTH (10(-7) M) also caused 40% increase in 32P incorporation into the BLM and 5 microM H-8 inhibited this increase too. PTH (10(-7) M) was found to stimulate phosphorylation of a protein of Mr 9000 by cAMP dependent protein kinase and 5 microM H-8 was found to block this stimulation also. From these results, it is proposed that PTH stimulates (Ca2++Mg2+)-ATPase activity by enhancing its affinity for free Ca2+ via cAMP-dependent phosphorylation of a BLM protein of Mr 9000.  相似文献   

15.
Calbindin-D28K is a 1 alpha,25-dihydroxyvitamin D3-dependent protein that belongs to the superfamily of high affinity calcium-binding proteins which includes parvalbumin, calmodulin, and troponin C. All of these proteins bind Ca2+ ligands by an alpha-helix-loop-alpha-helix domain that is termed an EF-hand. Calbindin-D28K has been reported previously to have four high affinity Ca2(+)-binding sites (KD less than 10(-7)) as quantitated by equilibrium dialysis. With the determination of the amino acid sequence, it was clear that there are in fact six apparent EF-hand domains, although the Ca2(+)-binding functionality of the two additional domains was unclear. It was of interest to quantitate the Ca2(+)-binding ability of chick intestinal calbindin-D28K utilizing several different Ca2+ titration methods that cover a range of macroscopic binding constants for weak or strong Ca2+ sites. Titrations with the Ca2+ chelator dibromo-1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (5,5'-Br2BAPTA), a Ca2+ selective electrode, and as followed by 1H NMR, which measure KD values of 10(-6)-10(-8) M, 10(-4)-10(-7) and 10(-3)-10(-5) M, respectively, gave no evidence for the presence of weak Ca2(+)-binding sites. However, Ca2+ titration of the fluorescent Ca2+ chelator Quin 2 in the presence of calbindin-D28K yielded a least squares fit optimal for 5.7 +/- 0.8 Ca2(+)-binding sites with macroscopic dissociation constants around 10(-8) M. The binding of Ca2+ by calbindin was found to be cooperative with at least two of the sites exhibiting positive cooperativity.  相似文献   

16.
A method for saponin skinning of primary cultured rat aortic smooth muscle cells was established. The saponin-treated cells could be stained with trypan blue and incorporated more 45Ca2+ than the nontreated cells under the same conditions. At low free Ca2+ concentration, greater than 85% of 45Ca2+ uptake into the skinned cells was dependent on the extracellularly supplied MgATP. In the intact cells, both caffeine and norepinephrine increased 45Ca2+ efflux. In the skinned cells, caffeine increased 45Ca2+ efflux, whereas norepinephrine did not. The caffeine-releasable 45Ca2+ uptake fraction in the skinned cells appeared at 3 X 10(-7) M Ca2+, increased gradually with the increase in free Ca2+ concentration, and reached a plateau at 1 X 10(-5) M Ca2+. The 45Ca2+ uptake fraction, which was significantly suppressed by sodium azide, appeared at 1 X 10(-5) M Ca2+ and increased monotonically with increasing free Ca2+ concentration. The results suggest that the caffeine-sensitive Ca2+ store, presumably the sarcoplasmic reticulum, plays a physiological role by releasing Ca2+ in response to norepinephrine or caffeine and by buffering excessive Ca2+. The 45Ca2+ uptake by mitochondria appears too insensitive to be important under physiological conditions.  相似文献   

17.
The effects of xylazine on porcine myometrial contractility were studied in vitro using uterine strips to determine the alpha 2-adrenergic influences during the diestrous stage of the estrous cycle. Xylazine (10(-8)-10(-5) M) caused a dose-dependent increase in the amplitude of myometrial contractility. The alpha 2-adrenoceptor antagonists idazoxan and yohimbine (10(-8)-10(-6) M) blocked the effects of xylazine in a dose-dependent manner. Yohimbine was approximately 10 times more potent than idazoxan in this regard. In contrast, an alpha 1-adrenoceptor antagonist prazosin (10(-7) and 10(-6) M) did not block the xylazine-induced increase in myometrial contractility, but a higher dose of prazosin (10(-5) M) did reduce the effects of xylazine. When the porcine uterine strips were pretreated with Ca2(+)-free Tyrod's solution or verapamil, a Ca2+ channel blocker, the effects of xylazine on myometrial contractility were completely abolished, whereas those of carbachol were only moderately reduced. The results suggest that the xylazine-induced myometrial contractility is mediated by alpha 2-adrenoceptors and that this effect is mediated, at least in part, by Ca2+ channels, whereas the effect of carbachol is attributed to an increase in both Ca2+ entry and release of Ca2+ from intracellular pools.  相似文献   

18.
Human liver microsomal fractions exhibit ATP-supported Ca2+ uptake which is half-maximal at 7 X 10(-7) M free Ca2+ in the presence of oxalate. Ca2+ uptake is coupled to a Ca2+-stimulated ATPase activity, which is half-maximal at 4 X 10(-7) M free Ca2+. Catalysis involves formation of an Mr = 116,000 phosphoprotein with stability characteristics of an acylphosphate compound suggested to represent a phosphoryl protein intermediate of the Ca2+-ATPase. Phosphorylation is half-maximal at about 10(-6) M free Ca2+. The Mr = 116,000 protein is highly susceptible to proteolysis with trypsin. The phosphorylated active site was localized in an Mr = 58,000 primary tryptic fragment and in an Mr = 34,000 subfragment. Analyses on the mechanism of the Ca2+-ATPase suggest the following reaction sequence: formation of an ADP-reactive phosphoenzyme (Mr = 116,000) with bound Ca2+, which can transphosphorylate its Pi to ADP, giving rise to synthesis of ATP; reversible transformation of the ADP-reactive phosphoenzyme into an isomer without bound Ca2+, which cannot further react with ADP; hydrolytical cleavage, probably catalyzed by Mg2+, of the ADP-unreactive phosphoenzyme with liberation of Pi. Comparison with the Ca2+-transport ATPase in sarcoplasmic reticulum of skeletal muscle led us to suggest that the Mr = 116,000 Ca2+-ATPase belongs to the class of E1P . E2P-ATPases and might be operative as a Ca2+-transport ATPase at the level of the endoplasmic reticulum in human liver.  相似文献   

19.
The alpha 1-subunit of the voltage-dependent L-type Ca2+ channel has distinct, allosterically coupled binding domains for drugs from different chemical classes (dihydropyridines, benzothiazepines, phenylalkylamines, diphenylbutylpiperidines). (-)-BM 20.1140 (ethyl-2,2-di-phenyl-4-(1-pyrrolidino)-5-(2-picolyl)- oxyvalerate) is a novel Ca2+ channel blocker which potently stimulates dihydropyridine binding (K0.5 = 2.98 nM) to brain membranes. This property is shared by (+)-cis-diltiazem, (+)-tetrandrine, fostedil and trans-diclofurime, but (-)-BM 20.1140 does not bind in a competitive manner to the sites labeled by (+)-cis-[3H]diltiazem. (+)-cis-Diltiazem and (-)-BM 20.1140 have differential effects on the rate constants of dihydropyridine binding. (+)-BM 20.1140 reverses the stimulation of the positive allosteric regulators (pA2 value for reversal of (-)-BM 20.1140 stimulation = 7.4, slope 0.72). The underlying molecular mechanism of the potentiation of dihydropyridine binding has been clarified. The K0.5 for free Ca2+ to stabilize a high affinity binding domain for dihydropyridines on purified L-type channels from rabbit skeletal muscle is 300 nM. (+)-Tetrandine (10 microM) increases the affinity 8-fold (K0.5 for free Ca2+ = 30.1 nM) and (+)-BM 20.114 (10 microM) inhibits the affinity increase (K0.5 for free Ca2+ = 251 nM). Similar results were obtained with membrane-bound Ca(2+)-channels from brain tissue which have higher affinity for free Ca2+ (K0.5 for free Ca2+ = 132 nM) and for dihydropyridines compared with skeletal muscle. It is postulated that the dihydropyridine and Ca(2+)-binding sites are interdependent on the alpha 1-subunit, that the different positive heterotropic allosteric regulators (by their differential effects on Ca2+ rate constants) optimize coordination for Ca2+ in the channel pore and, in turn, increase affinity for the dihydropyridines.  相似文献   

20.
Studies were made on the direct effect of platelet-derived growth factor (PDGF) on the high-affinity (Ca2+ +Mg2+)-ATPase, a membrane bound Ca2+-extrusion pump enzyme of the basolateral membranes (BLM) of canine kidney (Km for free Ca2+ = 1.0 x 10(-7) M, Vmax = 180 nmol Pi/mg/min). At 1 x 10(-7) M free Ca2+, PDGF (10(-10)-10(-8) M) stimulated the enzyme activity significantly. Addition of 5 - 200 microM suramin, a compound that blocks binding of PDGF to its receptors on cell membranes, inhibited the stimulatory effect of PDGF dose-dependently (IC50 = 40 microM). A high affinity specific receptor for PDGF (Kd = 4.4 x 10(-10) M, Bmax = 460 fmol/mg protein) was detected on BLM preparations by radioreceptor assay with 125I-PDGF and unlabelled PDGF. Suramin (10-1000 microM) also inhibited the binding of PDGF to BLM preparations dose-dependently. From these results, it is proposed that PDGF stimulates (Ca2+ +Mg2+)-ATPase activity of kidney BLM preparations by enhancing its affinity for free Ca2+ through a specific receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号