首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
杨志  姚俊  曹新 《遗传》2018,40(7):515-524
内耳是感受听觉和平衡觉的复杂器官。在内耳发育过程中,成纤维生长因子(fibroblast growth factor, FGF)信号通路参与了听基板的诱导、螺旋神经节(statoacoustic ganglion, SAG)的发育以及Corti器感觉上皮的分化。FGF信号开启了内耳早期发育的基因调控网络,诱导前基板区域以及听基板的形成。正常表达的FGF信号分子可促进听囊腹侧成神经细胞的特化,但成熟SAG神经元释放的过量FGF5可抑制此过程,形成负反馈环路使SAG在稳定状态下发育。FGF20在Notch信号通路的调控下参与了前感觉上皮区域向毛细胞和支持细胞的分化过程,而内毛细胞分泌的FGF8可调控局部支持细胞分化为柱细胞。人类FGF信号通路异常可导致多种耳聋相关遗传病。此外,FGF信号通路在低等脊椎动物毛细胞自发再生以及干细胞向内耳毛细胞诱导过程中都起到了关键作用。本文综述了FGF信号通路在内耳发育调控以及毛细胞再生中的作用及其相关研究进展,以期为毛细胞再生中FGF信号通路调控机制的阐明奠定理论基础。  相似文献   

2.
Canonical Wnt/β‐catenin signaling has been implicated in multiple developmental events including the regulation of proliferation, cell fate, and differentiation. In the inner ear, Wnt/β‐catenin signaling is required from the earliest stages of otic placode specification through the formation of the mature cochlea. Within the avian inner ear, the basilar papilla (BP), many Wnt pathway components are expressed throughout development. Here, using reporter constructs for Wnt/β‐catenin signaling, we show that this pathway is active throughout the BP (E6‐E14) in both hair cells (HCs) and supporting cells. To characterize the role of Wnt/β‐catenin activity in developing HCs, we performed gain‐ and loss‐of‐function experiments in vitro and in vivo in the chick BP and zebrafish lateral line systems, respectively. Pharmacological inhibition of Wnt signaling in the BP and lateral line neuromasts during the periods of proliferation and HC differentiation resulted in reduced proliferation and decreased HC formation. Conversely, pharmacological activation of this pathway significantly increased the number of HCs in the lateral line and BP. Results demonstrated that this increase was the result of up‐regulated cell proliferation within the Sox2‐positive cells of the prosensory domains. Furthermore, Wnt/β‐catenin activation resulted in enhanced HC regeneration in the zebrafish lateral line following aminoglycoside‐induced HC loss. Combined, our data suggest that Wnt/β‐catenin signaling specifies the number of cells within the prosensory domain and subsequently the number of HCs. This ability to induce proliferation suggests that the modulation of Wnt/β‐catenin signaling could play an important role in therapeutic HC regeneration. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 438–456, 2014  相似文献   

3.
The induction of inner ear hair cells from stem cells or progenitor cells in the inner ear proceeds through a committed inner ear sensory progenitor cell stage prior to hair cell differentiation. To increase the efficacy of inducing inner ear hair cell differentiation from the stem cells or progenitor cells, it is essential to identify comprehensive markers for the stem cells/progenitor cells from the inner ear, the committed inner ear sensory progenitor cells and the differentiating hair cells to optimize induction conditions. Here, we report that we efficiently isolated and expanded the stem cells or progenitor cells from postnatal mouse cochleae, and induced the generation of inner ear progenitor cells and subsequent differentiation of hair cells. We profiled the gene expression of the stem cells or progenitor cells, the inner ear progenitor cells, and hair cells using aRNA microarray analysis. The pathway and gene ontology (GO) analysis of differentially expressed genes was performed. Analysis of genes exclusively detected in one particular cellular population revealed 30, 38, and 31 genes specific for inner ear stem cells, inner ear progenitor cells, and hair cells, respectively. We further examined the expression of these genes in vivo and determined that Gdf10+Ccdc121, Tmprss9+Orm1, and Chrna9+Espnl are marker genes specific for inner ear stem cells, inner ear progenitor cells, and differentiating hair cells, respectively. The identification of these marker genes will likely help the effort to increase the efficacy of hair cell induction from the stem cells or progenitor cells.  相似文献   

4.
Understanding inner ear development with gene expression profiling   总被引:6,自引:0,他引:6  
  相似文献   

5.
Hair cell regeneration in the avian auditory epithelium   总被引:2,自引:0,他引:2  
Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regenerated hair cells arise from adjacent non-sensory (supporting) cells. Hair cell regeneration was initially described as a proliferative response whereby supporting cells re-enter the mitotic cycle, forming daughter cells that differentiate into either hair cells or supporting cells and thereby restore cytoarchitecture and function in the sensory epithelium. However, further analyses of the avian auditory epithelium (and amphibian vestibular epithelium) revealed a second regenerative mechanism, direct transdifferentiation, during which supporting cells change their gene expression and convert into hair cells without dividing. In the chicken auditory epithelium, these two distinct mechanisms show unique spatial and temporal patterns, suggesting they are differentially regulated. Current efforts are aimed at identifying signals that maintain supporting cells in a quiescent state or direct them to undergo direct transdifferentiation or cell division. Here, we review current knowledge about supporting cell properties and discuss candidate signaling molecules for regulating supporting cell behavior, in quiescence and after damage. While significant advances have been made in understanding regeneration in non-mammals over the last 20 years, we have yet to determine why the mammalian auditory epithelium lacks the ability to regenerate hair cells spontaneously and whether it is even capable of significant regeneration under additional circumstances. The continued study of mechanisms controlling regeneration in the avian auditory epithelium may lead to strategies for inducing significant and functional regeneration in mammals.  相似文献   

6.
The mammalian inner ear largely lacks the capacity to regenerate hair cells, the sensory cells required for hearing and balance. Recent studies in both lower vertebrates and mammals have uncovered genes and pathways important in hair cell development and have suggested ways that the sensory epithelia could be manipulated to achieve hair cell regeneration. These approaches include the use of inner ear stem cells, transdifferentiation of nonsensory cells, and induction of a proliferative response in the cells that can become hair cells.  相似文献   

7.
8.
9.
10.
The development of the organ of Corti and the highly specialized cells required for hearing involves a multitude of genes, many of which remain unknown. Here we describe the expression pattern of three genes not previously studied in the inner ear in mice at a range of ages both embryonic and early postnatal. Kcna10, a tetrameric Shaker-like potassium channel, is expressed strongly in the hair cells themselves. Odf2, as its centriolar isoform Cenexin, marks the dendrites extending to and contacting hair cells, and Pxn, a focal adhesion scaffold protein, is most strongly expressed in pillar cells during the ages studied. The roles of these genes are yet to be elucidated, but their specific expression patterns imply potential functional significance in the inner ear.  相似文献   

11.
Calcium-modulating cyclophilin ligand (Caml) is a ubiquitously expressed cytoplasmic protein that is involved in multiple signaling and developmental pathways. An observation in our laboratory of a protein-protein interaction between Caml and the cytoplasmic region of Cadherin23 led us to speculate that Caml might be important in the inner ear and play a role in the development and/or function of hair cells. To address this question, we generated a mouse line in which Caml expression was eliminated in Atoh1-expressing cells of the inner ear upon administration of tamoxifen. Tamoxifen was administered immediately after birth to neonates to assess the effect of loss of Caml in the inner ear during postnatal development. Hearing in treated animals was tested by auditory brain stem response (ABR) analysis and cochlear pathology was evaluated by light microscopy. Lack of Caml expression in the inner ear leads to severe loss of cochlear hair cells and complete deafness. Elucidating the role of Caml in the inner ear will aid our understanding of the molecular pathways important for auditory development and function.  相似文献   

12.
Neurosensory epithelia in the inner ear are the crucial structures for hearing and balance functions. Therefore, it is important to understand the cellular and molecular features of the epithelia, which are mainly composed of two types of cells: hair cells (HCs) and supporting cells (SCs). Here we choose to study the inner ear sensory epithelia in adult zebrafish not only because the epithelial structures are highly conserved in all vertebrates studied, but also because the adult zebrafish is able to regenerate HCs, an ability that mammals lose shortly after birth. We use the inner ear of adult zebrafish as a model system to study the mechanisms of inner ear HC regeneration in adult vertebrates that could be helpful for clinical therapy of hearing/balance deficits in human as a result of HC loss.Here we demonstrate how to do gross and fine dissections of inner ear sensory epithelia in adult zebrafish. The gross dissection removes the tissues surrounding the inner ear and is helpful for preparing tissue sections, which allows us to examine the detailed structure of the sensory epithelia. The fine dissection cleans up the non-sensory-epithelial tissues of each individual epithelium and enables us to examine the heterogeneity of the whole epithelium easily in whole-mount epithelial samples.Open in a separate windowClick here to view.(51M, flv)  相似文献   

13.

Background

In the inner ear Wnt signaling is necessary for proliferation, cell fate determination, growth of the cochlear duct, polarized orientation of stereociliary bundles, differentiation of the periotic mesenchyme, and homeostasis of the stria vascularis. In neonatal tissue Wnt signaling can drive proliferation of cells in the sensory region, suggesting that Wnt signaling could be used to regenerate the sensory epithelium in the damaged adult inner ear. Manipulation of Wnt signaling for regeneration will require an understanding of the dynamics of Wnt pathway gene expression in the ear. We present a comprehensive screen for 84 Wnt signaling related genes across four developmental and postnatal time points.

Results

We identified 72 Wnt related genes expressed in the inner ear on embryonic day (E) 12.5, postnatal day (P) 0, P6 and P30. These genes included secreted Wnts, Wnt antagonists, intracellular components of canonical signaling and components of non-canonical signaling/planar cell polarity.

Conclusion

A large number of Wnt signaling molecules were dynamically expressed during cochlear development and in the early postnatal period, suggesting complex regulation of Wnt transduction. The data revealed several potential key regulators for further study.  相似文献   

14.
Retinoblastoma gene (Rb1) is required for proper cell cycle exit in the developing mouse inner ear and its deletion in the embryo leads to proliferation of sensory progenitor cells that differentiate into hair cells and supporting cells. In a conditional hair cell Rb1 knockout mouse, Pou4f3-Cre-pRb-/-, pRb-/- utricular hair cells differentiate and survive into adulthood whereas differentiation and survival of pRb-/- cochlear hair cells are impaired. To comprehensively survey the pRb pathway in the mammalian inner ear, we performed microarray analysis of pRb-/- cochlea and utricle. The comparative analysis shows that the core pathway shared between pRb-/- cochlea and utricle is centered on E2F, the key pathway that mediates pRb function. A majority of differentially expressed genes and enriched pathways are not shared but uniquely associated with pRb-/-cochlea or utricle. In pRb-/- cochlea, pathways involved in early inner ear development such as Wnt/β-catenin and Notch were enriched, whereas pathways involving in proliferation and survival are enriched in pRb-/-utricle. Clustering analysis showed that the pRb-/- inner ear has characteristics of a younger control inner ear, an indication of delayed differentiation. We created a transgenic mouse model (ER-Cre-pRbflox/flox) in which Rb1 can be acutely deleted postnatally. Acute Rb1 deletion in the adult mouse fails to induce proliferation or cell death in inner ear, strongly indicating that Rb1 loss in these postmitotic tissues can be effectively compensated for, or that pRb-mediated changes in the postmitotic compartment result in events that are functionally irreversible once enacted. This study thus supports the concept that pRb-regulated pathways relevant to hair cell development, encompassing proliferation, differentiation and survival, act predominantly during early development.  相似文献   

15.
The major regions of the inner ear begin to be distinguishable by their patterns of gene expression very early, before the otocyst has closed. Later, individual cells within a neurogenic or sensory patch become committed to specific pathways of differentiation. Insights gained from homologies with invertebrates and from studies of tissues other than the ear, combined with discoveries from screens for mutations affecting development in the zebrafish, are beginning to reveal the genes and signalling mechanisms that control these cell-fate choices in the developing inner ear.  相似文献   

16.
We applied a micro-cDNA-based subtraction method to identify genes expressed in the regenerating sensory epithelia (SE) of the chicken inner ear. Sensory hair cells in the avian utricle SE are in a constant state of turnover, where dying hair cells are replaced by new ones derived from supporting cells. In contrast, hair cells in the cochlea remain quiescent unless damaged. We used this difference to enrich for utricle-specific genes, using reiterative cDNA subtraction and demonstrate enrichment for utricle-specific sequences. A total of 1710 cDNA sequence reads revealed the presence of many cDNAs encoding known structural components of the SE (for example, Harmonin and beta-tectorin), proteins involved in cellular proliferation, such as P311, HIPK2, and SPALT1, among many others of unknown function. These libraries are the first of their kind and should prove useful for the discovery of candidate genes for hearing disorders, regenerative and apoptotic pathways, and novel chicken ESTs.  相似文献   

17.
Retinoblastoma gene (Rb1) is required for proper cell cycle exit in the developing mouse inner ear and its deletion in the embryo leads to proliferation of sensory progenitor cells that differentiate into hair cells and supporting cells. In a conditional hair cell Rb1 knockout mouse, Pou4f3-Cre-pRb™/™, pRb™/™ utricular hair cells differentiate and survive into adulthood whereas differentiation and survival of pRb™/™ cochlear hair cells are impaired. To comprehensively survey the pRb pathway in the mammalian inner ear, we performed microarray analysis of pRb™/™ cochlea and utricle. The comparative analysis shows that the core pathway shared between pRb™/™ cochlea and utricle is centered on e2F, the key pathway that mediates pRb function. A majority of differentially expressed genes and enriched pathways are not shared but uniquely associated with pRb™/™ cochlea or utricle. In pRb™/™ cochlea, pathways involved in early inner ear development such as Wnt/β-catenin and Notch were enriched, whereas pathways involved in proliferation and survival are enriched in pRb™/™ utricle. Clustering analysis showed that the pRb™/™ inner ear has characteristics of a younger control inner ear, an indication of delayed differentiation. We created a transgenic mouse model (ER-Cre-pRbflox/flox) in which Rb1 can be acutely deleted postnatally. Acute Rb1 deletion in the adult mouse fails to induce proliferation or cell death in inner ear, strongly indicating that Rb1 loss in these postmitotic tissues can be effectively compensated for, or that pRb-mediated changes in the postmitotic compartment result in events that are functionally irreversible once enacted. This study thus supports the concept that pRb-regulated pathways relevant to hair cell development, encompassing proliferation, differentiation and survival, act predominantly during early development.Key words: hair cells, retinoblastoma, Rb1, proliferation, regeneration, apoptosis, inner ear  相似文献   

18.
19.
20.
The Notch signaling pathway is thought to regulate multiple stages of inner ear development. Mutations in the Notch signaling pathway cause disruptions in the number and arrangement of hair cells and supporting cells in sensory regions of the ear. In this study we identify an insertional mutation in the mouse Sfswap gene, a putative splicing factor, that results in mice with vestibular and cochlear defects that are consistent with disrupted Notch signaling. Homozygous Sfswap mutants display hyperactivity and circling behavior consistent with vestibular defects, and significantly impaired hearing. The cochlea of newborn Sfswap mutant mice shows a significant reduction in outer hair cells and supporting cells and ectopic inner hair cells. This phenotype most closely resembles that seen in hypomorphic alleles of the Notch ligand Jagged1 (Jag1). We show that Jag1; Sfswap compound mutants have inner ear defects that are more severe than expected from simple additive effects of the single mutants, indicating a genetic interaction between Sfswap and Jag1. In addition, expression of genes involved in Notch signaling in the inner ear are reduced in Sfswap mutants. There is increased interest in how splicing affects inner ear development and function. Our work is one of the first studies to suggest that a putative splicing factor has specific effects on Notch signaling pathway members and inner ear development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号