首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although bile acids are crucial for the absorption of lipophilic nutrients in the intestine, they are cytotoxic at high concentrations and can cause liver damage and promote colorectal carcinogenesis. The farnesoid X receptor (FXR), which is activated by bile acids and abundantly expressed in enterohepatic tissues, plays a crucial role in maintaining bile acids at safe concentrations. Here, we show that FXR induces expression of Akr1b7 (aldo-keto reductase 1b7) in murine small intestine, colon, and liver by binding directly to a response element in the Akr1b7 promoter. We further show that AKR1B7 metabolizes 3-keto bile acids to 3β-hydroxy bile acids that are less toxic to cultured cells than their 3α-hydroxy precursors. These findings reveal a feed-forward, protective pathway operative in murine enterohepatic tissues wherein FXR induces AKR1B7 to detoxify bile acids.  相似文献   

3.
Bile acid synthesis from cholesterol is tightly regulated via a feedback mechanism mediated by the farnesoid X receptor (FXR), a nuclear receptor activated by bile acids. Synthesis via the classic pathway is initiated by a series of cholesterol ring modifications and followed by the side chain cleavage. Several intermediates accumulate or are excreted as end products of the pathway in diseases involving defective bile acid biosynthesis. In this study, we investigated the ability of these intermediates to activate human FXR. In a cell-based reporter assay and coactivator recruitment assays in vitro, early intermediates possessing an intact cholesterol side chain were inactive, whereas 26- or 25-hydroxylated bile alcohols and C27 bile acids were highly efficacious ligands for FXR at a level comparable to that of the most potent physiological ligand, chenodeoxycholic acid. Treatment of HepG2 cells with these precursors repressed the rate-limiting cholesterol 7alpha-hydroxylase mRNA level and induced the small heterodimer partner and the bile salt export pump mRNA, indicating the ability to regulate bile acid synthesis and excretion. Because 26-hydroxylated bile alcohols and C27 bile acids are known to be evolutionary precursors of bile acids in mammals, our findings suggest that human FXR may have retained affinity to these precursors during evolution.  相似文献   

4.
The bile salt-activated farnesoid X receptor (FXR; NR1H4) controls expression of several genes considered crucial in maintenance of bile salt homeostasis. We evaluated the physiological consequences of FXR deficiency on bile formation and on the kinetics of the enterohepatic circulation of cholate, the major bile salt species in mice. The pool size, fractional turnover rate, synthesis rate, and intestinal absorption of cholate were determined by stable isotope dilution and were related to expression of relevant transporters in the livers and intestines of FXR-deficient (Fxr-/-) mice. Fxr-/- mice showed only mildly elevated plasma bile salt concentrations associated with a 2.4-fold higher biliary bile salt output, whereas hepatic mRNA levels of the bile salt export pump were decreased. Cholate pool size and total bile salt pool size were increased by 67 and 39%, respectively, in Fxr-/- mice compared with wild-type mice. The cholate synthesis rate was increased by 85% in Fxr-/- mice, coinciding with a 2.5-fold increase in cholesterol 7alpha-hydroxylase (Cyp7a1) and unchanged sterol 12alpha-hydroxylase (Cyp8b1) expression in the liver. Despite a complete absence of ileal bile acid-binding protein mRNA and protein, the fractional turnover rate and cycling time of the cholate pool were not affected. The calculated amount of cholate reabsorbed from the intestine per day was approximately 2-fold higher in Fxr-/- mice than in wild-type mice. Thus, the absence of FXR in mice is associated with defective feedback inhibition of hepatic cholate synthesis, which leads to enlargement of the circulating cholate pool with an unaltered fractional turnover rate. The absence of ileal bile acid-binding protein does not negatively interfere with the enterohepatic circulation of cholate in mice.  相似文献   

5.
6.
7.
8.
9.
Long-chain acyl-CoA synthetase 1 (ACSL1) plays a pivotal role in fatty acid β‑oxidation in heart, adipose tissue and skeletal muscle. However, key functions of ACSL1 in the liver remain largely unknown. We investigated acute effects of hepatic ACSL1 deficiency on lipid metabolism in adult mice under hyperlipidemic and normolipidemic conditions. We knocked down hepatic ACSL1 expression using adenovirus expressing a ACSL1 shRNA (Ad-shAcsl1) in mice fed a high-fat diet or a normal chow diet. Hepatic ACSL1 depletion generated a hypercholesterolemic phenotype in mice fed both diets with marked elevations of total cholesterol, LDL-cholesterol and free cholesterol in circulation and accumulations of cholesterol in the liver. Furthermore, SREBP2 pathway in ACSL1 depleted livers was severely repressed with a 50% reduction of LDL receptor protein levels. In contrast to the dysregulated cholesterol metabolism, serum triglycerides, free fatty acid and phospholipid levels were unaffected. Mechanistic investigations of genome-wide gene expression profiling and pathway analysis revealed that ACSL1 depletion repressed expressions of several key enzymes for bile acid biosynthesis, consequently leading to reduced liver bile acid levels and altered bile acid compositions. These results are the first demonstration of a requisite role of ACSL1 in bile acid biosynthetic pathway in liver tissue. Furthermore, we discovered that Acsl1 is a novel molecular target of the bile acid-activated farnesoid X receptor (FXR). Activation of FXR by agonist obeticholic acid repressed the expression of ACSL1 protein and mRNA in the liver of FXR wild-type mice but not in FXR knockout mice.  相似文献   

10.
ABSTRACT: BACKGROUND: Pathogenesis of inflammatory bowel diseases (IBD), ulcerative colitis (UC) and Crohn's disease (CD), involves interaction between environmental factors and inappropriate immune responses in the intestine of genetically predisposed individuals. Bile acids and their nuclear receptor, FXR, regulate inflammatory responses and barrier function in the intestinal tract. METHODS: We studied the association of five variants (rs3863377, rs7138843, rs56163822, rs35724, rs10860603) of the NR1H4 gene encoding FXR with IBD. 1138 individuals (591 non-IBD, 203 UC, 344 CD) were genotyped for five NR1H4 genetic variants with TaqMan SNP Genotyping Assays. RESULTS: We observed that the NR1H4 SNP rs3863377 is significantly less frequent in IBD cases than in non-IBD controls (allele frequencies: P = 0.004; wild-type vs. SNP carrier genotype frequencies: P = 0.008), whereas the variant rs56163822 is less prevalent in non-IBD controls (allele frequencies: P = 0.027; wild-type vs. SNP carrier genotype frequencies: P = 0.035). The global haplotype distribution between IBD and control patients was significantly different (P = 0.003). This also held true for the comparison between non-IBD and UC groups (P = 0.004), but not for the comparison between non-IBD and CD groups (P = 0.079). CONCLUSIONS: We show that genetic variation in FXR is associated with IBD, further emphasizing the link between bile acid signaling and intestinal inflammation.  相似文献   

11.
12.
《Cell host & microbe》2021,29(9):1366-1377.e9
  1. Download : Download high-res image (198KB)
  2. Download : Download full-size image
  相似文献   

13.
Cholesterol feeding upregulates CYP7A1 in rats but downregulates CYP7A1 in rabbits. To clarify the mechanism responsible for the upregulation of CYP7A1 in cholesterol-fed rats, the effects of dietary cholesterol (Ch) and cholic acid (CA) on the activation of the nuclear receptors, liver X-receptor (LXR-alpha) and farsenoid X-receptor (FXR), which positively and negatively regulate CYP7A1, were investigated in rats. Studies were carried out in four groups (n = 12/group) of male Sprague-Dawley rats fed regular chow (control), 2% Ch, 2% Ch + 1% CA, and 1% CA alone for 1 wk. Changes in mRNA expression of short heterodimer partner (SHP) and bile salt export pump (BSEP), target genes for FXR, were determined to indicate FXR activation, whereas the expression of ABCA1 and lipoprotein lipase (LPL), target genes for LXR-alpha, reflected activation. CYP7A1 mRNA and activity increased twofold and 70%, respectively, in rats fed Ch alone when the bile acid pool size was stable but decreased 43 and 49%, respectively, after CA was added to the Ch diet, which expanded the bile acid pool 3.4-fold. SHP and BSEP mRNA levels did not change after feeding Ch but increased 88 and 37% in rats fed Ch + CA. This indicated that FXR was activated by the expanded bile acid pool. When Ch or Ch + CA were fed, hepatic concentrations of oxysterols, ligands for LXR-alpha increased to activate LXR-alpha, as evidenced by increased mRNA levels of ABCA1 and LPL. Feeding CA alone enlarged the bile acid pool threefold and increased the expression of both SHP and BSEP. These results suggest that LXR-alpha was activated in rats fed both Ch or Ch + CA, whereas CYP7A1 mRNA and activity were induced only in Ch-fed rats where the bile acid pool was not enlarged such that FXR was not activated. In rats fed Ch + CA, the bile acid pool expanded, which activated FXR to offset the stimulatory effects of LXR-alpha on CYP7A1.  相似文献   

14.
Neurotoxicity induced by beta-amyloid peptide (Abeta) involves glutamate toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) receptors and elevation of intracellular calcium. However, the heterogeneity of the NMDA receptors, frequently composed of NR1 and NR2A-D subunits, has been less studied. Thus, we determined the contribution of NMDA receptor subtypes on Abeta(1-40) toxicity in HEK293 cells transiently expressing NR1/NR2A or NR1/NR2B subunits. Analysis of lactate dehydrogenase (LDH) release and trypan blue exclusion revealed an increase in Abeta(1-40) toxicity upon NR1/NR2A expression, compared to NR1/NR2B, indicating loss of plasma membrane integrity. Furthermore, Abeta(1-40) decreased intracellular ATP in cells expressing NR1/NR2A. MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate), a noncompetitive NMDA receptor antagonist, partially prevented the decrease in cell viability and the energy impairment. These differences were not accounted for by the activation of caspases 2, 3, 8 and 9 or calpains or by DNA fragmentation, excluding the hypothesis of apoptosis. Functional NR1/NR2A and NR1/NR2B receptor subtypes were further evidenced by single-cell calcium imaging. Stimulation of NR1/NR2A receptors with NMDA/glycine revealed an increase in intracellular calcium in cells pre-exposed to Abeta(1-40). Opposite effects were observed upon activation of NR1/NR2B receptors. These results suggest that NR1/NR2A-composed NMDA receptors mediate necrotic cell death in HEK293 cells exposed to Abeta(1-40) through changes in calcium homeostasis.  相似文献   

15.
16.
Combining the first generation H(1) antihistamine chlorpheniramine (1) with H(3) ligands of the alkylamine type has led to the identification of compound 9d, a dual ligand of both the H(1) and H(3) receptors.  相似文献   

17.
18.
Cafestol, a diterpene present in unfiltered coffee brews such as Scandinavian boiled, Turkish, and cafetière coffee, is the most potent cholesterol-elevating compound known in the human diet. Several genes involved in cholesterol homeostasis have previously been shown to be targets of cafestol, including cholesterol 7alpha-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid biosynthesis. We have examined the mechanism by which cafestol elevates serum lipid levels. Changes in several lipid parameters were observed in cafestol-treated APOE3Leiden mice, including a significant increase in serum triglyceride levels. Microarray analysis of these mice identified alterations in hepatic expression of genes involved in lipid metabolism and detoxification, many of which are regulated by the nuclear hormone receptors farnesoid X receptor (FXR) and pregnane X receptor (PXR). Further studies demonstrate that cafestol is an agonist ligand for FXR and PXR, and that cafestol down-regulates expression of the bile acid homeostatic genes CYP7A1, sterol 12alpha-hydroxylase, and Na(+)-taurocholate cotransporting polypeptide in the liver of wild-type but not FXR null mice. Cafestol did not affect genes known to be up-regulated by FXR in the liver of wild-type mice, but did increase expression of the positive FXR-target genes intestinal bile acid-binding protein and fibroblast growth factor 15 (FGF15) in the intestine. Because FGF15 has recently been shown to function in an enterohepatic regulatory pathway to repress liver expression of bile acid homeostatic genes, its direct induction in the gut may account for indirect effects of cafestol on liver gene expression. PXR-dependent gene regulation of cytochrome P450 3A11 and other targets by cafestol was also only seen in the intestine. Using a double FXR/PXR knockout mouse model, we found that both receptors contribute to the cafestol-dependent induction of intestinal FGF15 gene expression. In conclusion, cafestol acts as an agonist ligand for both FXR and PXR, and this may contribute to its impact on cholesterol homeostasis.  相似文献   

19.
The Fas/APO-1 receptor and its deadly ligand   总被引:4,自引:0,他引:4  
The cell surface receptor Fas/APO-1 and its ligand have recently been identified as important mediators of apoptosis. Both molecules are crucial for the maintenance of a sound immune system, and when defective they give rise to severe autoimmune disorders. Understanding the mechanism and regulation of Fas/APO-1-triggered cell death promises important insights for the pathogenesis of AIDS, cancer and autoimmune diseases.  相似文献   

20.
Recognition of carbohydrates on glycosylated molecules typically requires multivalent interactions with receptors. Monovalent forms of terminal saccharides engaged by the receptor binding sites typically display weak affinities in the mm range and poor specificity. In contrast, multivalent forms of the same saccharides are bound with strong affinity (10(-7)-10(-9) m) and significantly greater specificity. Although multivalency can readily account for increased affinity, the molecular basis for enhanced specificity is not well understood. We have examined the specificity of the cysteine-rich domain of the mannose/GalNAc-4-SO4 receptor using monovalent and multivalent forms of the trisaccharide GalNAcbeta1,4GlcNAcbeta1,2Manalpha (GGnM) sulfated at either the C4 (S4GGnM) or C3 (S3GGnM) hydroxyl of the terminal GalNAc. Monovalent S4GGnM and S3GGnM have K(i) values of 25.8 and 16.2 microm, respectively. Multivalent conjugates of the same GalNAc-4-SO4- and GalNAc-3-SO4-bearing trisaccharides (6.7 mol of trisaccharide/mol of bovine serum albumin) have K(i) values of 0.013 and 0.170 microm, respectively. The 2000-fold versus 95-fold change in affinity seen for the multivalent forms of these 4-sulfated and 3-sulfated trisaccharides reflects a difference in the impact of conformational entropy. A large fraction of the SO4-3-GalNAc structures exists in a form that is not favorable for binding to the Cys-rich domain. This reduces the effective concentration of SO4-3-GalNAc as compared with SO4-4-GalNAc under the same conditions and results in a markedly lower association rate. This difference in association rate accounts for the 12-fold difference in the rate of clearance from the blood seen with S4GGnM-BSA and S3GGnM-BSA in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号