首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moderate reduction in the protein content of the mother's diet (hidden malnutrition) does not alter body and brain weights of rat pups at birth, but leads to dysfunction of neocortical noradrenaline systems together with impaired long-term potentiation and visuo-spatial memory performance. As β?-adrenoceptors and downstream protein kinase signaling are critically involved in synaptic long-term potentiation and memory formation, we evaluated the β?-adrenoceptor density and the expression of cyclic-AMP dependent protein kinase, calcium/calmodulin-dependent protein kinase and protein kinase Fyn, in the frontal cortex of prenatally malnourished adult rats. In addition, we also studied if β?-adrenoceptor activation with the selective β? agonist dobutamine could improve deficits of prefrontal cortex long-term potentiation presenting these animals. Prenatally malnourished rats exhibited half of β?-adrenoceptor binding, together with a 51% and 65% reduction of cyclic AMP-dependent protein kinase α and calcium/calmodulin-dependent protein kinase α expression, respectively, as compared with eutrophic animals. Administration of the selective β? agonist dobutamine prior to tetanization completely rescued the ability of the prefrontal cortex to develop and maintain long-term potentiation in the malnourished rats. Results suggest that under-expression of neocortical β?-adrenoceptors and protein kinase signaling in hidden malnourished rats functionally affects the synaptic networks subserving prefrontal cortex long-term potentiation. β?-adrenoceptor activation was sufficient to fully recover neocortical plasticity in the PKA- and calcium/calmodulin-dependent protein kinase II-deficient undernourished rats, possibly by producing extra amounts of cAMP and/or by recruiting alternative signaling cascades.  相似文献   

2.
Learning‐correlated plasticity at CA1 hippocampal excitatory synapses is dependent on neuronal activity and NMDA receptor (NMDAR) activation. However, the molecular mechanisms that transduce plasticity stimuli to postsynaptic potentiation are poorly understood. Here, we report that neurogranin (Ng), a neuron‐specific and postsynaptic protein, enhances postsynaptic sensitivity and increases synaptic strength in an activity‐ and NMDAR‐dependent manner. In addition, Ng‐mediated potentiation of synaptic transmission mimics and occludes long‐term potentiation (LTP). Expression of Ng mutants that lack the ability to bind to, or dissociate from, calmodulin (CaM) fails to potentiate synaptic transmission, strongly suggesting that regulated Ng–CaM binding is necessary for Ng‐mediated potentiation. Moreover, knocking‐down Ng blocked LTP induction. Thus, Ng–CaM interaction can provide a mechanistic link between induction and expression of postsynaptic potentiation.  相似文献   

3.
In neuroscience, myosin V motor proteins have attracted attention since they are highly expressed in brain, and absence of myosin Va in man leads to a severe neurological disease called Griscelli syndrome. While in some cells myosin V is described to act as a vesicle transport motor, an additional role in exocytosis has emerged recently. In neurons, myosin V has been linked to exocytosis of secretory vesicles and recycling endosomes. Through these functions, it is implied in regulating important brain functions including the release of neuropeptides by exocytosis of large dense-core vesicles and the insertion of neurotransmitter receptors into post-synaptic membranes. This review focuses on the role of myosin V in (i) axonal transport and stimulated exocytosis of large dense-core vesicles to regulate the secretion of neuroactive substances, (ii) tethering of the endoplasmic reticulum at cerebellar synapses to permit long-term depression, (iii) recycling of α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors at hippocampal synapses during long-term potentiation, and (iv) recycling of nicotinic acetylcholine receptors at the neuromuscular junction. Myosin V is thus discussed as an important modulator of synaptic plasticity.  相似文献   

4.
代谢型谷氨酸受体在突触可塑性中的作用   总被引:2,自引:0,他引:2  
陈鹏  李金莲 《生命科学》2001,13(3):107-109,102
突触可塑性是近几年神经科学研究的热点之一,因为它对于理解神经系统的学习、学习和记忆、多咱神经疾病等许多过程有着重要的意义。除了离子型谷氨酸受体外,代谢型谷氨酸受体也参与了一些脑区中不同形式的突触可塑性变化。本文就代谢型谷氨酸受体选择性激动剂和拮抗剂对长时程增强和长时程抑制的作用进行了综述,以助于人们进一步理解突触可塑性的细胞和分子机制。  相似文献   

5.
Previous studies have implicated the role of Purkinje cells in motor learning and the underlying mechanisms have also been identified in great detail during the last decades. Here we report that cyclin‐dependent kinase 5 (Cdk5)/p35 in Purkinje cell also contributes to synaptic plasticity. We previously showed that p35?/? (p35 KO) mice exhibited a subtle abnormality in brain structure and impaired spatial learning and memory. Further behavioral analysis showed that p35 KO mice had a motor coordination defect, suggesting that p35, one of the activators of Cdk5, together with Cdk5 may play an important role in cerebellar motor learning. Therefore, we created Purkinje cell‐specific conditional Cdk5/p35 knockout (L7‐p35 cKO) mice, analyzed the cerebellar histology and Purkinje cell morphology of these mice, evaluated their performance with balance beam and rota‐rod test, and performed electrophysiological recordings to assess long‐term synaptic plasticity. Our analyses showed that Purkinje cell‐specific deletion of Cdk5/p35 resulted in no changes in Purkinje cell morphology but severely impaired motor coordination. Furthermore, disrupted cerebellar long‐term synaptic plasticity was observed at the parallel fiber‐Purkinje cell synapse in L7‐p35 cKO mice. These results indicate that Cdk5/p35 is required for motor learning and involved in long‐term synaptic plasticity.

  相似文献   


6.
Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.  相似文献   

7.
Cdk5 (cyclin-dependent kinase 5) activity is dependent upon association with one of two neuron-specific activators, p35 or p39. Genetic deletion of Cdk5 causes perinatal lethality with severe defects in corticogenesis and neuronal positioning. p35(-/-) mice are viable with milder histological abnormalities. Although substantial evidence implicates Cdk5 in synaptic plasticity, its role in learning and memory has not been evaluated using mutant mouse models. We report here that p35(-/-) mice have deficiencies in spatial learning and memory. Close examination of hippocampal circuitry revealed subtle histological defects in CA1 pyramidal cells. Furthermore, p35(-/-) mice exhibit impaired long-term depression and depotentiation of long-term potentiation in the Schaeffer collateral CA1 pathway. Moreover, the Cdk5-dependent phosphorylation state of protein phosphatase inhibitor-1 was increased in 4-week-old mice due to increased levels of p39, which co-localized with inhibitor-1 and Cdk5 in the cytoplasm. These results demonstrate that p35-dependent Cdk5 activity is important to learning and synaptic plasticity. Deletion of p35 may shift the substrate specificity of Cdk5 due to compensatory expression of p39.  相似文献   

8.
Aplysia neurons express several splice variants of apCAM, a member of the Ig superfamily of cell adhesion molecules. The major transmembrane isoform is endocytosed in sensory neurons (SNs) during the early phases of long‐term facilitation (LTF) of SN synapses evoked by serotonin (5‐HT) or in the motor neuron L7 during the early phases of long‐term depression (LTD) of SN synapses evoked by Phe‐Met‐Arg‐Phe‐amide (FMRFa). We used single cell RT‐PCR to evaluate whether expression of mRNAs encoding for different apCAM isoforms in SNs and L7 is regulated during LTF produced by 5‐HT, and LTD produced by FMRFa. Single SNs and L7s express mRNAs encoding for all major isoforms, but the proportion of each isoform expressed differs for the two cells. SN expresses more mRNA encoding for GPI‐linked isoforms, while L7 expresses more mRNA encoding for the major transmembrane isoform. The neuromodulators produced significant changes in the proportional levels of mRNAs encoding for specific apCAM isoforms during the first 4 h after treatments without affecting overall levels of apCAM mRNA. 5‐HT evoked changes that exaggerated cell‐specific differences in isoform expression. FMRFa evoked changes that reduced cell‐specific differences in isoform expression. The effects of the neuromodulators on apCAM mRNA expression were not detected when cells were cultured alone or when SNs were cocultured with another motor cell that failed to induce synapse formation (L11). The results suggest that rapid cell‐specific regulation of splice variant expression may contribute to different forms of long‐term synaptic plasticity. © 2000 John Wiley & Sons, Inc. J Neurobiol 45: 152–161, 2000  相似文献   

9.
The anterior cingulate cortex (ACC) is critical for brain functions including learning, memory, fear and pain. Long-term synaptic potentiation (LTP), a cellular model for learning and memory, has been reported in the ACC neurons. Unlike LTP in the hippocampus and amygdala, two key structures for memory and fear, little is known about the synaptic mechanism for the expression of LTP in the ACC. Here we use whole-cell patch clamp recordings to demonstrate that cingulate LTP requires the functional recruitment of GluR1 AMPA receptors; and such events are rapid and completed within 5-10 min after LTP induction. Our results demonstrate that the GluR1 subunit is essential for synaptic plasticity in the ACC and may play critical roles under physiological and pathological conditions.  相似文献   

10.
Linking synaptic plasticity with behavioral learning requires understanding how synaptic efficacy influences postsynaptic firing in neurons whose role in behavior is understood. Here, we examine plasticity at a candidate site of motor learning: vestibular nerve synapses onto neurons that mediate reflexive movements. Pairing nerve activity with changes in postsynaptic voltage induced bidirectional synaptic plasticity in vestibular nucleus projection neurons: long-term potentiation relied on calcium-permeable AMPA receptors and postsynaptic hyperpolarization, whereas long-term depression relied on NMDA receptors and postsynaptic depolarization. Remarkably, both forms of plasticity uniformly scaled synaptic currents evoked by pulse trains, and these changes in synaptic efficacy were translated into linear increases or decreases in postsynaptic firing responses. Synapses onto local inhibitory neurons were also plastic but expressed only long-term depression. Bidirectional, linear gain control of vestibular nerve synapses onto projection neurons provides a plausible mechanism for motor learning underlying adaptation of vestibular reflexes.  相似文献   

11.
Protease‐activated receptor‐1 (PAR1) is an unusual G‐protein coupled receptor (GPCR) that is activated through proteolytic cleavage by extracellular serine proteases. Although previous work has shown that inhibiting PAR1 activation is neuroprotective in models of ischemia, traumatic injury, and neurotoxicity, surprisingly little is known about PAR1's contribution to normal brain function. Here, we used PAR1?/? mice to investigate the contribution of PAR1 function to memory formation and synaptic function. We demonstrate that PAR1?/? mice have deficits in hippocampus‐dependent memory. We also show that while PAR1?/? mice have normal baseline synaptic transmission at Schaffer collateral‐CA1 synapses, they exhibit severe deficits in N‐methyl‐d ‐aspartate receptor (NMDAR)‐dependent long‐term potentiation (LTP). Mounting evidence indicates that activation of PAR1 leads to potentiation of NMDAR‐mediated responses in CA1 pyramidal cells. Taken together, this evidence and our data suggest an important role for PAR1 function in NMDAR‐dependent processes subserving memory formation and synaptic plasticity.  相似文献   

12.
Mental retardation (MR) occurs in 2 to 3 % of the general population and is still not therapeutically addressed. Milder forms of MR result from deficient synaptogenesis and/or impaired synaptic plasticity during childhood. These alterations would result from disequilibrium in signalling pathways regulating the balance between long term potentiation (LTP) and long term depression (LTD) in certain neurons such as hippocampus neurons. To provide mentally retarded children with increased cognitive abilities, novel experimental approaches are currently being developed to characterize signalling status associated with MR and to identify therapeutic targets that would restore lost equilibrium. Several studies also highlighted the major role played by molecular switches like kinases, phosphatases, small G proteins and their regulators in the coordination and integration of signalling pathways associated with synaptic plasticity. These proteins may therefore constitute promising therapeutic targets for a number of cognitive deficiencies.  相似文献   

13.
Cortical plasticity: It's all the range!   总被引:3,自引:0,他引:3  
When rats learn a motor skill, synaptic potentials in the motor cortex are enhanced. A new study has revealed that this learning-induced enhancement limits further synaptic potentiation, but not synaptic depression. These findings support the view that activity-dependent synaptic plasticity is the brain's memory mechanism.  相似文献   

14.
Integrins are heterodimeric transmembrane cell adhesion receptors that are essential for a wide range of biological functions via cell–matrix and cell–cell interactions. Recent studies have provided evidence that some of the subunits in the integrin family are involved in synaptic and behavioral plasticity. To further understand the role of integrins in the mammalian central nervous system, we generated a postnatal forebrain and excitatory neuron‐specific knockout of α8‐integrin in the mouse. Behavioral studies showed that the mutant mice are normal in multiple hippocampal‐dependent learning tasks, including a T‐maze, non‐match‐to‐place working memory task for which other integrin subunits like α3‐ and β1‐integrin are required. In contrast, mice mutant for α8‐integrin exhibited a specific impairment of long‐term potentiation (LTP) at Schaffer collateral–CA1 synapses, whereas basal synaptic transmission, paired‐pulse facilitation and long‐term depression (LTD) remained unaffected. Because LTP is also impaired in the absence of α3‐integrin, our results indicate that multiple integrin molecules are required for the normal expression of LTP, and different integrins display distinct roles in behavioral and neurophysiological processes like synaptic plasticity.  相似文献   

15.
A major effort in neuroscience is directed towards understanding the roles of Ca2+ signalling in the induction of synaptic plasticity. Here, we summarize the evidence concerning Ca2+ signalling, paying particular attention to CA1 excitatory synapses, and its relationship to the induction of long-term potentiation and long-term depression. We discuss the ways in which synaptic activation can elevate Ca2+ postsynaptically and how dendritic spines may act as a Ca2+ compartment which can both isolate and integrate Ca2+ signals.  相似文献   

16.
Learning-related synaptic plasticity: LTP and LTD.   总被引:7,自引:0,他引:7  
The past several years have seen studies of synaptic plasticity in both invertebrate and vertebrate nervous systems come of age and lead to important new findings. In particular, current evidence points to a possible presynaptic site for long-term potentiation and the involvement of a retrograde messenger from the postsynaptic neuron. Recent advances in both cerebellar and cortical forms of long-term depression are also discussed.  相似文献   

17.
The molecular basis for cerebellar plasticity and motor learning remains controversial. Cerebellar Purkinje cells (PCs) contain a high concentration of cGMP-dependent protein kinase type I (cGKI). To investigate the function of cGKI in long-term depression (LTD) and cerebellar learning, we have generated conditional knockout mice lacking cGKI selectively in PCs. These cGKI mutants had a normal cerebellar morphology and intact synaptic calcium signaling, but strongly reduced LTD. Interestingly, no defects in general behavior and motor performance could be detected in the LTD-deficient mice, but the mutants exhibited an impaired adaptation of the vestibulo-ocular reflex (VOR). These results indicate that cGKI in PCs is dispensable for general motor coordination, but that it is required for cerebellar LTD and specific forms of motor learning, namely the adaptation of the VOR.  相似文献   

18.
Do stress and long-term potentiation share the same molecular mechanisms?   总被引:2,自引:0,他引:2  
Stress is a biological, significant factor shown to influence hippocampal synaptic plasticity and cognitive functions. Although numerous studies have reported that stress produces a suppression in long-term potentiation (LTP; a putative synaptic mechanism underlying learning and memory), little is known about the mechanism by which this occurs. Because the effects of stress on LTP and its converse process, long-term depression (LTD), parallel the changes in synapticity that occur following the establishment of LTP with tetanic stimulation (i.e., occluding LTP and enhancing LTD induction), it has been proposed that stress affects subsequent hippocampal plasticity by sharing the same molecular machinery required to support LTP. This article summarizes recent findings from ours and other laboratories to assess this view and discusses relevant hypotheses in the study of stress-related modifications of synaptic plasticity.  相似文献   

19.
Theta burst stimulation of the human motor cortex   总被引:28,自引:0,他引:28  
It has been 30 years since the discovery that repeated electrical stimulation of neural pathways can lead to long-term potentiation in hippocampal slices. With its relevance to processes such as learning and memory, the technique has produced a vast literature on mechanisms of synaptic plasticity in animal models. To date, the most promising method for transferring these methods to humans is repetitive transcranial magnetic stimulation (rTMS), a noninvasive method of stimulating neural pathways in the brain of conscious subjects through the intact scalp. However, effects on synaptic plasticity reported are often weak, highly variable between individuals, and rarely last longer than 30 min. Here we describe a very rapid method of conditioning the human motor cortex using rTMS that produces a controllable, consistent, long-lasting, and powerful effect on motor cortex physiology and behavior after an application period of only 20-190 s.  相似文献   

20.
AMPA-type glutamate receptors (AMPARs) mediate most fast excitatory synaptic transmission in the mammalian brain. It is widely believed that the long-lasting, activity-dependent changes in synaptic strength, including long-term potentiation and long-term depression, could be the molecular and cellular basis of experience-dependent plasticities, such as learning and memory. Those changes of synaptic strength are directly related to AMPAR trafficking to and away from the synapse. There are many forms of synaptic plasticity in the mammalian brain, while the prototypic form, hippocampal CA1 long-term potentiation, has received the most intense investigation. After synthesis, AMPAR subunits undergo posttranslational modifications such as glycosylation, palmitoylation, phosphorylation and potential ubiquitination. In addition, AMPAR subunits spatiotemporally associate with specific neuronal proteins in the cell. Those posttranslational modifications and receptor-associated proteins play critical roles in AMPAR trafficking and regulation of AMPAR-dependent synaptic plasticity. Here, we summarize recent studies on posttranslational modifications and associated proteins of AMPAR subunits, and their roles in receptor trafficking and synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号