首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To identify genes involved in pigment gland morphogenesis in cotton, gene expression was profiled using genechip (Affymetrix) during pigment gland morphogenesis in cotton variety Xiangmian-18, which has glandless seeds but glanded plants, and a glandless line, N5. The results showed that 303 genes were differentially expressed by a factor greater than two during gland morphogenesis; 59% (180) of these genes shared similarity with known genes in GenBank. These genes play roles in defense response, response to oxidative stress, peroxidase activity, and other metabolic pathways. KOBAS (KEGG Orthology-Based Annotation System) indicate that these genes are involved in 68 biochemical pathways. These findings suggest that the related defense response, gossypol biosynthesis pathway and other complex regulation may be associated with pigment gland morphogenesis in cotton. The results may provide a basis for further study and serve as a guide for related research.  相似文献   

2.
3.
4.
5.
《Genomics》2021,113(3):1146-1156
Investigation of cotton response to nematode infection will allow us to better understand the cotton immune defense mechanism and design a better biotechnological approach for efficiently managing pest nematodes in cotton. In this study, we firstly treated cotton by root knot nematode (RKN, Meloidogyne incognita) infections, then we employed the high throughput deep sequencing technology to sequence and genome-widely identify all miRNAs in cotton; finally, we analyzed the functions of these miRNAs in cotton response to RKN infections. A total of 266 miRNAs, including 193 known and 73 novel miRNAs, were identified by deep sequencing technology, which belong to 67 conserved and 66 novel miRNA families, respectively. A majority of identified miRNA families only contain one miRNA; however, miR482 family contains 14 members and some others contain 2–13 members. Certain miRNAs were specifically expressed in RKN-infected cotton roots and others were completely inhibited by RKN infection. A total of 50 miRNAs were differentially expressed after RKN infection, in which 28 miRNAs were up-regulated and 22 were inhibited by RKN treatment. Based on degradome sequencing, 87 gene targets were identified to be targeted by 57 miRNAs. These miRNA-targeted genes are involved in the interaction of cotton plants and nematode infection. Based on GO (gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, 466 genes from all 636 miRNA targets were mapped to 6340 GO terms, 181 genes from 228 targets of differentially expressed miRNAs were mapped to 1588 GO terms. The GO terms were then categorized into the three main GO classes: biological processes, cellular components, and molecular functions. The targets of differentially expressed miRNAs were enriched in 43 GO terms, including 22 biological processes, 10 cellular components, and 11 molecular functions (p < 0.05). Many identified processes were associated with organism responses to the environmental stresses, including regulation of nematode larval development, response to nematode, and response to flooding. Our results will enhance the study and application of developing new cotton cultivars for nematode resistance.  相似文献   

6.
7.
Lotus (Nelumbo Adans) is an aquatic perennial plant that flourished during the middle Albian stage. In this study, we characterized the digital gene expression signatures for China Antique lotus under conditions of heat shock stress. Using RNA-seq technology, we sequenced four libraries, specifically, two biological replicates for control plant samples and two for heat stress samples. As a result, 6,528,866 to 8,771,183 clean reads were mapped to the reference genome, accounting for 92–96% total clean reads. A total of 396 significantly altered genes were detected across the genome, among which 315 were upregulated and 81 were downregulated by heat shock stress. Gene ontology (GO) enrichment of differentially expressed genes revealed protein folding, cell morphogenesis and cellular component morphogenesis as the top three functional terms under heat shock stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis led to the identification of protein processing in endoplasmic reticulum, plant-pathogen interactions, spliceosome, endocytosis, and protein export as significantly enriched pathways. Among the upregulated genes, small heat shock proteins (sHsps) and genes related to cell morphogenesis were particularly abundant under heat stress. Data from the current study provide valuable clues that may help elucidate the molecular events underlying heat stress response in China Antique lotus.  相似文献   

8.
9.
10.
11.
《Fungal biology》2020,124(7):648-660
UDP-glucose pyrophosphorylase (UGP, EC 2.7.7.9) is an essential enzyme involved in carbohydrate metabolism. In Saccharomyces cerevisiae and other fungi, the UGP gene is indispensable for normal cell development, polysaccharide synthesis, and stress response. However, the function of the UGP homolog in plant pathogenic fungi has been rarely explored during pathogenesis. In this study, we characterize a UGP homolog named VdUGP from Verticillium dahliae, a soil-borne fungus that causes plant vascular wilt. In comparison with wild-type strain V07DF2 and complementation strains, the VdUGP knocked down mutant 24C9 exhibited sensitivity to sodium dodecyl sulfate (perturbing membrane integrity) and high sodium chloride concentration (high osmotic pressure stress). More than 25 % of the conidia of the mutant developed into short and swollen hypha and formed hyperbranching and compact colonies. The mutant exhibited decreased virulence on cotton and tobacco seedlings. Further investigation determined that the germination of the mutant spores was significantly delayed compared with the wild-type strain on the host roots. RNA-seq analysis revealed that a considerable number of genes encoding secreted proteins and carbohydrate-active enzymes were significantly downregulated in the mutant at an early stage of infection compared with those of the wild-type strain. RNA-seq data indicated that mutation affected many Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways both in the pathogen and in the inoculated plants at the infection stage. These alterations of the mutant in cultural phenotypes, virulence, and gene expression profiles clearly indicated that VdUGP played important roles in fungal cell morphogenesis, stress responses, and host infection.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Regulatory gene expression during the patterning of molluscan shells has only recently drawn the attention of scientists. We show that several Hox genes are expressed in association with the shell gland and the mantle in the marine vetigastropod Gibbula varia (L.). The expression of Gva-Hox1, Gva-Post2, and Gva-Post1 is initially detected in the trochophore larval stage in the area of the shell field during formation of embryonic shell. Later, during development, these genes are expressed in the mantle demonstrating their continuous role in larval shell formation and differentiation of mantle edge that secretes the adult shell. Gva-Hox4 is expressed only late during the development of the veliger-like larva and may also be involved in the adult shell morphogenesis. Additionally, this gene also seems to be associated with secretion of another extracellular structure, the operculum. Our data provide further support for association of Hox genes with shell formation which suggest that the molecular mechanisms underlying shell synthesis may consist of numerous conserved pattern-formation genes. In cephalopods, the only other molluscan class in which Hox gene expression has been studied, no involvement of Hox genes in shell formation has been reported. Thus, our results suggest that Hox genes are coopted to various functions in molluscs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号