首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porcine reproductive and respiratory syndrome virus (PRRSV) has been recognized as one of the most important pathogens of pigs throughout the world. In 2006, more than 10 provinces of China have experienced an epizootic outbreak of pig diseases characterized by high fever, reddened skin and high morbidity and mortality. From June 2006 to April 2007, we have investigated some clinical samples in Hubei province by RT-PCR and cloned several major genes, N, GP5 and NSP2 gene, shown in this study. Phylogenetic analysis of these genes revealed that the highly pathogenic PRRSV variant, ZB, was responsible for 2006 emergent outbreak of pig disease in Hubei province similar with those variants isolated from other provinces in China in 2006, and belongs to the NA-type PRRSV. In the PRRSV variants, the N and GP5 shear about 90% identity with prototypic ATCC VR-2332 and some typical NA-type Chinese isolates, except the 2850bp NSP2 gene (only shares 65% identity with ATCC VR-2332). But they all shear more than and 97% identity with other highly pathogenetic Chinese PRRSV strains. Additionally, there are extensive amino acid (aa) mutations in the GP5 protein and 2 deletions in the Nsp2 protein when compared with the previous isolates. Most of the variants found in 2006 epizootic outbreak of pig diseases in China were the farthest variants from the typical NA-type PRRSV in phylogenetic distance, and these diversities may be responsible for the differences in the pathogenicity observed between these variants and original Chinese PRRSV strains.  相似文献   

2.
3.

Background

Porcine reproductive and respiratory syndrome (PRRS) has now been widely recognized as an economically important disease. The objective of this study was to compare the molecular and biological characteristics of porcine reproductive and respiratory syndrome virus (PRRSV) field isolates in China to those of the modified live virus (MLV) PRRS vaccine and its parent strain (ATCC VR2332).

Results

Five genes (GP2, GP3, GP4, GP5 and NSP2) of seven isolates of PRRSV from China, designated LS-4, HM-1, HQ-5, HQ-6, GC-2, GCH-3 and ST-7/2008, were sequenced and analyzed. Phylogenetic analyses based on the nucleotide sequence of the ORF2-5 and NSP2 showed that the seven Chinese isolates belonged to the same genetic subgroup and were related to the North American PRRSV genotype. Comparative analysis with the relevant sequences of another Chinese isolate (BJ-4) and North American (VR2332 and MLV) viruses revealed that these isolates have 80.8-92.9% homology with VR-2332, and 81.3-98.8% identity with MLV and 80.7-92.9% with BJ-4. All Nsp2 nonstructural protein of these seven isolates exhibited variations (a 29 amino acids deletion) in comparison with other North American PRRSV isolates. Therefore, these isolates were novel strain with unique amino acid composition. However, they all share more than 97% identity with other highly pathogenic Chinese PRRSV strains. Additionally, there are extensive amino acid (aa) mutations in the GP5 protein and the Nsp2 protein when compared with the previous isolates.

Conclusions

These results might be useful to study the genetic diversity of PRRSV in China and to track the infection sources as well as for vaccines development.  相似文献   

4.
Zhou Z  Li X  Liu Q  Hu D  Yue X  Ni J  Yu X  Zhai X  Galliher-Beckley A  Chen N  Shi J  Tian K 《Journal of virology》2012,86(11):6373-6374
A highly pathogenic strain of porcine reproductive and respiratory syndrome virus (PRRSV), characterized by a discontinuous 30-amino-acid deletion in its Nsp2-coding region, has been emerging in China since 2006. Here, we report the complete genomic sequence of two novel Chinese virulent PRRSV variants with additional NSP2-gene deletions, which will help us understand the molecular and evolutionary characteristics of PRRSV in Asia.  相似文献   

5.

Background

Porcine reproductive and respiratory syndrome with PRRS virus (PRRSV) infection, which causes significant economic losses annually, is one of the most economically important diseases affecting swine industry worldwide. In 2006 and 2007, a large-scale outbreak of highly pathogenic porcine reproductive and respiratory syndrome (PRRS) happened in China and Vietnam. However little data is available on global host response to PRRSV infection at the protein level, and similar approaches looking at mRNA is problematic since mRNA levels do not necessarily predict protein levels. In order to improve the knowledge of host response and viral pathogenesis of highly virulent Chinese-type PRRSV (H-PRRSV) and Non-high-pathogenic North American-type PRRSV strains (N-PRRSV), we analyzed the protein expression changes of H-PRRSV and N-PRRSV infected lungs compared with those of uninfected negative control, and identified a series of proteins related to host response and viral pathogenesis.

Results

According to differential proteomes of porcine lungs infected with H-PRRSV, N-PRRSV and uninfected negative control at different time points using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry identification, 45 differentially expressed proteins (DEPs) were identified. These proteins were mostly related to cytoskeleton, stress response and oxidation reduction or metabolism. In the protein interaction network constructed based on DEPs from lungs infected with H-PRRSV, HSPA8, ARHGAP29 and NDUFS1 belonged to the most central proteins, whereas DDAH2, HSPB1 and FLNA corresponded to the most central proteins in those of N-PRRSV infected.

Conclusions

Our study is the first attempt to provide the complex picture of pulmonary protein expression during H-PRRSV and N-PRRSV infection under the in vivo environment using 2D-DIGE technology and bioinformatics tools, provides large scale valuable information for better understanding host proteins-virus interactions of these two PRRSV strains.  相似文献   

6.
7.
8.

Background

Host genetics has been shown to play a role in porcine reproductive and respiratory syndrome (PRRS), which is the most economically important disease in the swine industry. A region on Sus scrofa chromosome (SSC) 4 has been previously reported to have a strong association with serum viremia and weight gain in pigs experimentally infected with the PRRS virus (PRRSV). The objective here was to identify haplotypes associated with the favorable phenotype, investigate additional genomic regions associated with host response to PRRSV, and to determine the predictive ability of genomic estimated breeding values (GEBV) based on the SSC4 region and based on the rest of the genome. Phenotypic data and 60 K SNP genotypes from eight trials of ~200 pigs from different commercial crosses were used to address these objectives.

Results

Across the eight trials, heritability estimates were 0.44 and 0.29 for viral load (VL, area under the curve of log-transformed serum viremia from 0 to 21 days post infection) and weight gain to 42 days post infection (WG), respectively. Genomic regions associated with VL were identified on chromosomes 4, X, and 1. Genomic regions associated with WG were identified on chromosomes 4, 5, and 7. Apart from the SSC4 region, the regions associated with these two traits each explained less than 3% of the genetic variance. Due to the strong linkage disequilibrium in the SSC4 region, only 19 unique haplotypes were identified across all populations, of which four were associated with the favorable phenotype. Through cross-validation, accuracies of EBV based on the SSC4 region were high (0.55), while the rest of the genome had little predictive ability across populations (0.09).

Conclusions

Traits associated with response to PRRSV infection in growing pigs are largely controlled by genomic regions with relatively small effects, with the exception of SSC4. Accuracies of EBV based on the SSC4 region were high compared to the rest of the genome. These results show that selection for the SSC4 region could potentially reduce the effects of PRRS in growing pigs, ultimately reducing the economic impact of this disease.  相似文献   

9.
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease in pigs caused by PRRS virus (PRRSV). Although PRRSV infection-induced cell apoptosis has been established, the related viral protein is still unknown. Here, we reported that PRRSV nonstructural protein 4 (nsp4) was a critical apoptosis inducer. Nsp4 could activate caspase-3, -8, and -9. Using truncated constructs without different domains in nsp4, we demonstrated that the full-length of nsp4 structure was required for its apoptosis-inducing activity. Furthermore, using site-directed mutagenesis to inactivate the 3C-like serine protease activity of nsp4, we showed that nsp4-induced apoptosis was dependent on its serine protease activity. The ability of nsp4 to induce apoptosis was significantly impaired by His39, Asp64, and Ser118 mutations, suggesting that His39, Asp64, and Ser118 were essential for nsp4 to trigger apoptosis. In conclusion, our present work showed that PRRSV nsp4 could induce apoptosis in host cells and might be partially responsible for the apoptosis induced by PRRSV infection. PRRSV 3C-like protease-mediated apoptosis represents the first report in the genus Arterivirus, family Arteriviridae.  相似文献   

10.
三带喙库蚊体内猪繁殖与呼吸综合征病毒的分离与鉴定   总被引:1,自引:0,他引:1  
【目的】调查猪场蚊虫是否能携带猪繁殖与呼吸综合征(PRRS)病毒。【方法】采集发生PRRS疫情的3个养猪场蚊虫样本,采用RT-PCR方法检测PRRS病毒核酸,取阳性蚊虫样本接种Marc-145细胞进行病毒的分离培养,以间接免疫荧光抗体技术和分子克隆技术进行病毒的鉴定。【结果】 养猪场内的蚊虫主要有三带喙库蚊Culex tritaeniorhychus、凶小库蚊Culex modestus、中华按蚊Anopheles sinensis和骚扰阿蚊Armigeres obturbans,其中三带喙库蚊占86.76%;以PRRS病毒N基因引物进行扩增,三带喙库蚊样本呈现阳性反应,而其他蚊种均为阴性。在蚊虫接种的Marc-145细胞中可见细胞融合和空泡形成等细胞病变效应;用抗PRRS病毒N蛋白抗体和羊抗猪IgG(H+L)-FITC进行间接免疫荧光染色,感染细胞呈现黄绿色荧光;以NSP2基因引物进行RT-PCR扩增、克隆与测序,发现库蚊源病毒与相应猪场猪源病毒中相应基因的序列具有较高同源性。【结论】 三带喙库蚊为猪舍优势蚊种,并能携带猪繁殖与呼吸综合征病毒。  相似文献   

11.
Porcine reproductive and respiratory syndrome (PRRS) is a viral disease defined by reproductive problems, respiratory distress and a negative impact on growth rate and general condition. Virulent PRRS virus (PRRSV) strains have emerged in the last years with evident knowledge gaps in their impact on the host immune response. Thus, the present study examines the impact of acute PRRS virus (PRRSV) infection, with two strains of different virulence, on selected immune parameters and on the gut microbiota composition of infected pigs using 16S rRNA compositional sequencing. Pigs were infected with a low virulent (PRRS_3249) or a virulent (Lena) PRRSV-1 strain and euthanized at 1, 3, 6, 8 or 13 days post-inoculation (dpi). Faeces were collected from each animal at the necropsy time-point. Alpha and beta diversity analyses demonstrated that infection, particularly with the Lena strain, impacted the microbiome composition from 6 dpi onwards. Taxonomic differences revealed that infected pigs had higher abundance of Treponema and Methanobrevibacter (FDR < 0.05). Differences were more considerable for Lena- than for PRRS_3249-infected pigs, showing the impact of strain virulence in the intestinal changes. Lena-infected pigs had reduced abundancies of anaerobic commensals such as Roseburia, Anaerostipes, Butyricicoccus and Prevotella (P < 0.05). The depletion of these desirable commensals was significantly correlated to infection severity measured by viraemia, clinical signs, lung lesions and immune parameters (IL-6, IFN-γ and Hp serum levels). Altogether, the results from this study demonstrate the indirect impact of PRRSV infection on gut microbiome composition in a strain virulence-dependent fashion and its association with selected immune markers.  相似文献   

12.
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important swine pathogens because it is highly infectious and causes economic losses due to decreased pig productivity. In this study, the 603 bp complete major envelope protein encoding gene (ORF5) of 32 field PRRSV isolates from Vietnam collected during 2008–2012 were sequenced and analyzed. Multiple nucleotide (nt) and deduced amino acid (aa) alignments of ORF5 were performed on the 32 isolates: the representative strains (European and North American genotypes), Chinese strains available in GenBank and vaccine strains licensed for use in Vietnam. The results showed 94.8–100.0% nt identity and 94.0–100% aa similarity among the 32 isolates. These isolates shared similarities with the prototype of the North American PRRSV strain (VR‐2332; nt 87.8–89.3%, aa 87.5–90.0%), and Lelystat virus, the prototype of the European PRRSV strain (LV; nt 61.1–61.9%, aa 55.1‐57.0%). There was greater similarity with QN07 (nt 96.5‐98.5%, aa 96.0‐99.0%) from the 2007 PRRS outbreak in QuangNam Province, CH‐1a (nt 93.2–95.1%, 91.5–93.5%) isolated in China in 1995 and JXA1 (nt 96.5–98.6%, aa 95.0–98.0%), the highly pathogenic strain from China isolated in 2006. The Vietnamese isolates were more similar to JXA1‐R (nt 96.5–98.6%, aa 95.0–98.0%), the strain used in Chinese vaccines, than to Ingelvac MLV/BSL‐PS (nt 87.2–89.0%, aa 86.0–89.0%). Phylogenetic analysis showed that the 32 isolates were of the North American genotype and classified into sub‐lineage 8.7. This sub‐lineage contains highly pathogenic Chinese PRRSV strains. This study documents genetic variation in circulating PRRSV strains and could assist more effective use of PRRS vaccines in Vietnam.  相似文献   

13.
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) is an infectious disease characterized by severe reproductive deficiency in pregnant sows, typical respiratory symptoms in piglets, and high mortality rate of piglets. In this study, we employed an Affymetrix microarray chip to compare the gene expression profiles of lung tissue samples from Dapulian (DPL) pigs (a Chinese indigenous pig breed) and Duroc×Landrace×Yorkshire (DLY) pigs after infection with PRRSV. During infection with PRRSV, the DLY pigs exhibited a range of clinical features that typify the disease, whereas the DPL pigs showed only mild signs of the disease. Overall, the DPL group had a lower percentage of CD4+ cells and lower CD4+/CD8+ratios than the DLY group (p<0.05). For both IL-10 and TNF-α, the DLY pigs had significantly higher levels than the DPL pigs (p<0.01). The DLY pigs have lower serum IFN-γ levels than the DPL pigs (p<0.01). The serum IgG levels increased slightly from 0 dpi to 7 dpi, and peaked at 14 dpi (p<0.0001). Microarray data analysis revealed 16 differentially expressed (DE) genes in the lung tissue samples from the DLY and DPL pigs (q≤5%), of which LOC100516029 and LOC100523005 were up-regulated in the PRRSV-infected DPL pigs, while the other 14 genes were down-regulated in the PRRSV-infected DPL pigs compared with the PRRSV-infected DLY pigs. The mRNA expression levels of 10 out of the 16 DE genes were validated by real-time quantitative RT-PCR and their fold change was consistent with the result of microarray data analysis. We further analyzed the mRNA expression level of 8 differentially expressed genes between the DPL and DLY pigs for both uninfected and infected groups, and found that TF and USP18 genes were important in underlying porcine resistance or susceptibility to PRRSV.  相似文献   

14.
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of PRRS, which causes severe reproductive failure in sows, respiratory disease in young and growing pigs, and enormous economic losses to the global swine industry. In this study, SILAC combined with MS/MS was used to quantitatively identify the secretory proteins differentially expressed in PRRSV‐infected Marc‐145 cells compared with mock‐infected controls. In total, we identified 204 secretory proteins showing significant differences in infected cells (163 upregulated, 41 downregulated). Intensive bioinformatic analysis of secretome data revealed that PRRSV infection strongly activated nonclassical protein secretion, especially vesicle‐mediated release of exosomal proteins, including different danger‐associated molecular pattern molecules and the majority of secreted proteins involved in protein binding and transport, regulation of response to stimulus, metabolic processes, and immune responses. According to the functional proteins analysis, we speculate that proteins functioning in binding, transport, and the immune response are exploited by PRRSV to facilitate virus replication and immune evasion. Our study for the first time analyzes the secretory protein profile of PRRSV‐infected Marc‐145 cells and provides valuable insight into the host response to PRRSV infection.  相似文献   

15.
16.
17.
Porcine reproductive and respiratory syndrome (PRRS) is a swine infectious disease causing major economic problems on the intensive pig industry. This virus has been reported worldwide in domestic pigs and there is evidence of PRRS virus (PRRSV) infection in wild boar (Sus scrofa). Nonetheless, the epidemiological role of wild boar and extensively kept domestic pigs remains unclear. The aim of this study was to determine the occurrence of PRRS in wild boar and Iberian pigs in the dehesa ecosystem of the Castile-La Mancha region of Spain, which boasts one of the most important free-roaming porcine livestock and hunting industries in the country. Using geo-spatial analysis of literature data, we first explored the relationship between domestic pig density and PRRS occurrence in wild boar in Europe. Results revealed that PRRS occurrence in wild boar may be influenced, albeit not significantly, by domestic pig density. Next, we analyzed sera from 294 wild boar and 80 Iberian pigs by indirect enzyme-linked immunosorbent assay for PRRSV antibodies. The sera and 27 wild boar tissue samples were analyzed by two real-time RT-PCR assays, targeting the most conserved genes of the PRRSV genome, ORF1 and ORF7. Seven wild boar (2.4 %) and one Iberian pig (1.3 %) were seropositive, while none of the animals tested positive for PRRSV by RT-PCR. Our results confirm the limited spread of PRRSV in free-roaming Iberian pigs and wild boar living in mutual contact. Further studies would be necessary to address whether this low seroprevalence found in these animals reflects transmission from intensively kept pigs or the independent circulation of specific strains in free-roaming pigs.  相似文献   

18.
Lu Q  Wang XL  Song YH  Li YF  Bai J  Jiang P 《病毒学报》2011,27(6):542-548
猪繁殖与呼吸综合征病毒(PRRSV)是目前引起国内外养猪业严重经济损失的重要病原之一,病毒基因和毒力变异较大。PRRSV NT0801株分离自我国发病猪群,毒力较强,但NSP2基因不存在高致病性PRRSV 30个氨基酸的缺失。为了进一步阐明该分离株的分子特征,本研究对该毒株全基因序列进行了测定和分析,结果该毒株基因组全长15 439 bp,其中包含29 nt Poly(A)。与高致病性PRRSV毒株JXA1比较,核酸序列同源性为96.7%,推导的GP3和GP5氨基酸序列同源性分别为97.2%和98.5%,但NSP2基因无30个氨基酸的缺失;与传统型毒株ch-1a比较,推导的GP3和GP5氨基酸序列同源性分别为92.9%和91.5%;基因进化树分析结果显示其介于高致病性和传统PRRSV毒株之间。与其它不同毒力PRRSV分离株基因序列比较,未发现明显重组信号。不同毒力毒株氨基酸残基比对分析结果显示,15个位点潜在毒力相关氨基酸残基中,该毒株有9个与高致病性PRRSV毒株一致,3个与高致病性PRRSV毒株不同,但与传统型和JXA1疫苗株相同,1个位点只与JXA1疫苗株相同,2个与其它毒株都不相同。表明该分离株与高致病性PRRSV密切相关,PRRSV流行毒株变异与基因突变有关,从而为该病毒毒力基因定位研究奠定了基础。  相似文献   

19.
20.
安徽PRSS发病猪副猪嗜血杆菌的分离鉴定及其耐药性分析   总被引:3,自引:0,他引:3  
目的了解猪繁殖与呼吸综合征(PRRS)发病猪继发感染副猪嗜血杆菌(HPS)的情况及分离菌株的药物感受性。方法应用细菌分离培养、形态学检查、生化试验和PCR技术,对2007年1月至2008年12月从安徽不同地区采集的146头份PRRS发病猪的病料进行HPS检测,并采用标准K-B纸片法对分离菌株进行14种抗菌药物敏感试验。结果分离鉴定出12株HPS,检出率为8.22%(12/146);12株HPS对氯霉素100%敏感,环丙沙星为91.7%,阿莫西林和新霉素为83.3%,对罗红霉素100%耐药,阿米卡星为83.3%。结论安徽省不同地区PRRS感染猪群中均存在程度不同的HPS感染,各地区HPS分离株表现出形态上的变化特征和一致的生化特性,且有对临床常用抗菌药物耐药性增强的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号