首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Sister chromatid exchanges (SCE) and chromosome aberrations were induced in nondividing CHO cells that had been arrested in their cell cycle by deprivation of the essential amino acid arginine. Cells arrested in arginine-deficient medium (ADM) were treated with one of the mutagenic agents N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) or mitomycin C (MMC) and refed with complete medium; the recovering cell population was sampled at various intervals thereafter and mitotic cells analyzed for the presence of chromosome aberrations and SCE. Both chemicals were observed to cause delays in the cell cycle of recovering cells and to induce, chromosome aberrations and SCE at low doses. We have described the variation in the incidence of chromosome aberrations and SCE with respect to sampling time and the number of cell cycles traversed. When ADM-arrested CHO cells were treated with three mutagens at various intervals either before or after release from ADM, it was observed that: (a) UV light induced the greatest number of SCE when applied to cells undergoing DNA synthesis, and SCE yeilds induced by this agent could be reduced by postirradiation incubation in ADM; (b) MNNG induced fewer SCE when applied to cells undergoing DNA synthesis, and SCE yields induced by this agent could not be reduced by posttreatment incubation in ADM for 24 hr. (c) MMC induced the same level irrespective of the time of exposure, and SCE yields induced by this agent could not be reduced by posttreatment incubation in ADM for 24 hr. This work was supported by grants from the British Columbia Foundation for Non-Animal Research (to W. D. M.), and the National Cancer Institute of Canada and the National Research Council of Canada (to H. F. S.). Professor H. F. Stich is a Research Associate of the NCI.  相似文献   

2.
We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells [H. Nagasawa, Y. Peng, P.F. Wilson, Y.C. Lio, D.J. Chen, J.S. Bedford, J.B. Little, Role of homologous recombination in the alpha-particle-induced bystander effect for sister chromatid exchanges and chromosomal aberrations, Radiat. Res. 164 (2005) 141-147]. In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23 to 0.33SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after alpha-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.  相似文献   

3.
C. H. Ockey 《Chromosoma》1981,84(2):243-256
SCE induction in synchronised CHO cells treated with methyl methane sulphonate (MMS) in G1 was studied over successive pairs of cell cycles by introducing bromodeoxyuridine (BrdU) at consecutive G1 stages. When individual cell cycle SCE values were calculated from the data, anomalous results were obtained with ratios of 1.01.82.1 for the first three cycles but a negative value for the fourth cycle. Further studies using different BrdU concentrations showed that MMS induced SCEs were reduced by values exceeding 50% in DNA containing high levels of incorporated BrdU. This reduction was dose dependent and accounted for the anomalous results obtained over successive cycles. Lesions leading to chromatid exchanges were also reduced by the same mechanism. SCEs induced by UV irradiation were also decreased but those induced by the cross-linking agent nitrogen mustard (HN2) remained unaffected. The results indicate that not only are SCE lesions induced by MMS, UV or HN2 expressed independently of the spontaneous SCEs induced by BrdU but that SCE lesions are multiple in nature. Mechanisms by which SCE lesions could be repaired in BrdU containing DNA are discussed. SCE lesions in MMS treated cells arrested in G1 with arginine deprived medium (ADM) are repaired without the presence of BrdU in the DNA. An opposite effect is seen however in the control cells, where SCEs are increased with time spent in ADM arrest. These interactions between the effects of MMS, BrdU and ADM arrest are discussed.  相似文献   

4.
Sister chromatid exchanges induced in cultured mammalian cells by chromate   总被引:1,自引:0,他引:1  
Chromate compounds induced sister chromatoid exchanges (SCEs) and chromosome aberrations in cultured mammalian cells. Similar increases in SCE frequency were observed in human fibroblasts exposed to the compounds K2Cr2O7 and K2CrO4. Marked increases in SCE frequency in cells exposed to chromate for a 48-h period were detected at concentrations between 10(-7) and 10(-6) M. Chromosome aberrations (primarily chromatid breaks) were also produced in human cells exposed to K2CrO4 at concentrations between 8 . 10(-7) and 3 . 10(-6) M. K2CrO4, but not the trivalent compound CrCl3, induced SCEs in Chinese hamster ovary (CHO) cells at low concentrations.  相似文献   

5.
The induction of cytotoxicity, chromosomal aberrations, and sister chromatid exchanges (SCEs) was measured in CHO K-1c cells and in isogenic X-ray-sensitive mutant xrs-6c cells that had been irradiated with X rays and alpha particles in isoleucine-deficient alpha-minimal essential medium in G1 phase of the cell cycle. There was a noticeable shoulder region on the survival curve for CHO K-1c cells irradiated with very low doses of alpha particles, whereas this feature was absent for xrs-6c cells with alpha-particle doses as low as 0.5 cGy. Higher frequencies of chromatid-type aberrations were induced in G1-phase xrs-6c cells than in G1-phase CHO K-1c cells by both gamma- and alpha-particle irradiation. Induction of nonlethal chromosomal aberrations was observed following exposure to 2-6 cGy of alpha particles, doses yielding 97-100% cell survival. Irradiation with 0.5 cGy of alpha particles induced SCE; nearly 60% of irradiated cells contained significantly increased levels of SCE. However, only 3% of the nuclei of cells exposed to 0.5 cGy of alpha-particle radiation were actually traversed by an alpha particle. The observation that a large fraction of cells apparently survive exposure to very low doses of alpha-particle radiation with persistent genetic damage manifested by both chromosomal aberrations and SCEs may have important implications for the carcinogenic hazards of high-LET radiation.  相似文献   

6.
Sister-chromatid exchanges (SCEs) induced by mitomycin C (MMC), 4-nitroquinoline-1-oxide (4NQO) or UV-light in cultured Chinese hamster ovary cells (CHO K-1 cells) were enhanced by cinoxate (2-ethoxyethyl p-methoxycinnamate) or methyl sinapate (methyl 3,5-dimethoxy 4-hydroxycinnamate). Both substances are cinnamate derivatives and cinoxate is commonly used as a cosmetic UV absorber. Methyl sinapate also increased the frequency of cells with chromosome aberrations in the CHO K-1 cells treated with MMC, 4NQO or UV. These increasing effects of methyl sinapate were critical in the G1 phase of the cell cycle and the decline of the frequencies of UV-induced SCEs and chromosome aberrations during liquid holding was not seen in the presence of methyl sinapate. Both compounds were, however, ineffective in cells treated with X-rays. In cells from a normal human embryo and from a xeroderma pigmentosum (XP) patient, MMC-induced SCEs were also increased by the post-treatment with methyl sinapate. The SCE frequencies in UV-irradiated normal human cells were elevated by methyl sinapate, but no SCE-enhancing effects were observed in UV-irradiated XP cells. Our results suggest that the test substances inhibit DNA excision repair and that the increase in the amount of unrepaired DNA damage might cause the enhancement of induced SCEs and chromosome aberrations.  相似文献   

7.
Studies of classical chromosome aberrations and sister-chromatid exchanges (SCES) suggest independent mechanisms for the two events despite some common features. Examination of chromosome breakage caused by X-rays, visible light, and viruses has shown that few chromatid breaks are accompanied by SCEs at the sites of breaks. No similar observations were available for chemically induced breaks, but it has been reported that rat chromosomes exposed to dimethylbenzanthracene (DMBA) contained a preponderance of both aberrations and SCEs in certain specific regions, implicating a common process in their formation. These conclusions were drawn from a comparison of breaks induced in vivo with SCEs induced in vitro. However, we used 7 chemical mutagens to induce both chromatid breaks and SCEs in "harlequin" chromosomes of cultured rat and Chinese hamster ovary (CHO) cells and found that 25% of the 914 breaks scored were associated with SCEs. The proportion of breaks accompanied by SCEs is related to the overall SCE frequency and falls into the range predicted on the basis that breaks and SCEs occur independently. The reported association between sites for SCEs and aberrations also reflects secondary factors, such as induction of SCEs and aberrations during DNA synthesis in late replicating regions of the chromosomes.  相似文献   

8.
G Speit  S Haupter 《Mutation research》1987,190(3):197-203
Penicillamine (PA), a drug used for the treatment of rheumatoid arthritis induces sister-chromatid exchanges (SCEs) and chromosome aberrations in cultivated mammalian cells. PA in concentrations from 400 micrograms/ml upward induced SCEs and proliferative delay in human blood cultures when added for the last 24 h of the culture period. In V79 Chinese hamster cells SCE induction was found after acute exposure to PA before the addition of BrdUrd and after chronic exposure during one cell cycle in the presence of BrdUrd. The effect of PA on SCE frequencies occurred both after treatment in complete medium and in serum-free medium and was not influenced by the application of an S9 mix. The simultaneous addition of peroxidase reduced the PA-induced SCEs whereas catalase did not show any effect. Chromosome analysis in the first mitosis after PA treatment revealed a significant increase in the incidence of chromosome aberrations and endoreduplication. The results are discussed with respect to the cause and the significance of the observed effects in connection with mutagenicity testing.  相似文献   

9.
The X-ray-sensitive Chinese hamster ovary (CHO) mutant cell lines xrs 5 and xrs 6 were used to study the relation between X-ray-induced DNA lesions and biological effects. The frequencies of chromosomal aberrations and sister-chromatid exchanges (SCE) were determined in wild-type CHO-K1 as well as mutants xrs 5 and xrs 6 cells following X-irradiation under aerobic and anaerobic conditions. Furthermore, we used a newly developed immunochemical method (based on the binding of a monoclonal antibody to single-stranded DNA) to assay DNA single-strand breaks (SSBs) induced by gamma-rays in these CHO cells, after a repair time of up to 4 h. For all cell lines tested the frequency of X-ray-induced chromosomal aberrations was strongly increased after irradiation in air compared with hypoxic conditions. When compared to the wild-type line, the xrs mutants known to have a defect in repair of DNA double-strand breaks (DSBs) exhibited a markedly enhanced sensitivity to aerobic irradiation, and a high OER (oxygen enhancement ratio) of 2.8-3.5, compared with 1.8-2 in CHO-K1 cells. The induction of SCE by X-rays was relatively little affected in CHO-K1 irradiated in air compared with hypoxic conditions (OER = 0.8), and in xrs 5 (OER = 0.7). A dose-dependent increase in the frequency of SCEs was obtained in xrs 6 cells treated with X-rays in air, and a further increase by a factor of 2 was evident under hypoxic conditions (OER = 0.4). With the immunochemical assay of SSB following gamma-irradiation, no difference was found between wild-type and mutant strains in the number of SSBs induced. The observed rate of rejoining of SSBs was also the same for all cell lines studied.  相似文献   

10.
Cell-cycle kinetics, sister-chromatid exchange (SCE) and chromosome aberrations have been studied from the skin fibroblasts of the Indian muntjac after treatment with 100 micrograms/ml of caffeine and 0.05 microgram/ml of anthramycin. The cultures were incubated for a period which was sufficient for the completion of two consecutive cell cycles and both the drugs appeared to produce a slight inhibitory effect. When anthramycin-treated cells were however post-treated with caffeine, the cells did not proceed beyond one cycle and exhibited a mitotic block. The SCE frequency in the control and the experiments with caffeine and anthramycin was 8.63, 18.32 and 34.88 per cell respectively. The SCEs were randomly distributed amongst all chromosomes unlike a non-random distribution within the X chromosomes. Caffeine and anthramycin produced only 0.5% and 3.1 cells with chromosome aberrations respectively. Potentiation of chromosome aberrations was observed when the anthramycin-treated cells were post-treated with caffeine. Caffeine potentiation presumably results from an inhibition of the cells to cycle and a failure to repair the effect of the mutagen on DNA.  相似文献   

11.
o-Phenylphenol (OPP), is used in Japan as a fungicide in food additives for citrus fruits. The induction of chromosome aberrations and sister-chromatid exchanges (SCEs) by OPP in cultured Chinese hamster ovary (CHO-K1) cells was studied. Cells were exposed to various concentrations of OPP ranging from 50 to 175 micrograms/ml for 3 h, and further incubated for 27 and 42 h. These incubation periods are almost equal to 2 and 3 cell cycles. SCEs and chromosome aberrations were induced by OPP at concentrations of 100, 125 and 150 micrograms/ml after the incubation for 27 h. For chromosome aberrations, chromatid breaks and exchanges there was a dose-dependent increase. Diplochromosomes due to endoreduplication were also caused by the same concentrations of OPP in a dose-dependent manner. After incubation for 42 h, chromosome aberrations were also increased by OPP at concentrations of 100 and 125 micrograms/ml, but the frequencies of SCEs were not significantly different from those of the control. These results suggest that OPP has a cytogenetic toxicity, and that the DNA damage resulting in SCEs induced by OPP is relatively short-lived and can be repaired during the longer incubation time.  相似文献   

12.
The induction of chromosomal aberrations and sister-chromatid exchanges (SCEs) by short-wave ultraviolet (UV) and X-irradiation was studied in Chinese hamster ovary (CHO) wild-type (WT) cells and one of its UV-hypersensitive mutants, 43-3B. The results indicate that CHO 43-3B show high levels of spontaneously occurring chromosomal aberrations and SCEs; these levels are, respectively, approximately 4 and 1.7 times those found in WT CHO. Treatment with UV produced a considerable delay in the cell-cycle progression of the mutant cells compared to the WT cells. Doses of UV that had no effect on WT cells, significantly induced chromosomal alterations in the mutant in a dose-dependent manner. An approximately 5-fold increase in the induced frequencies of SCEs was obtained in 43-3B cells after UV treatment. No synergistic effect was observed with UV irradiation and the inhibitor of poly(ADP-ribose) synthetase, 3-aminobenzamide (3AB), in either cell type. The frequency of SCEs in the mutant cell lines was lower than would be expected if the effects of UV and the inhibitor were additive. X-Ray alone in G1 and in combination with 3AB in G2 did not induce increased frequencies of chromosomal aberrations in mutant cells in comparison to the WT cells.  相似文献   

13.
The modifying effects of tannin components extracted from green tea and black tea on mutagen-induced SCEs and chromosome aberrations were studied. These tannin components did not affect spontaneous SCEs and chromosome aberrations in cultured Chinese hamster cells. The frequency of SCEs and chromosome aberrations induced by mitomycin C (MMC) or UV was enhanced by the posttreatment with tea tannin components. When cells were post-treated with tea tannin components in the presence of metabolic enzymes of rat liver (S9 mix), the modifying effects on the induction of SCEs and chromosome aberrations by mutagens were complicated. MMC- and UV-induced SCEs and chromosome aberrations were suppressed by the posttreatment with tea tannin components at low concentrations (less than or equal to 6.7 micrograms/ml) with S9 mix. At a high concentration of tea tannin components (20 micrograms/ml) with S9 mix, a co-mutagenic effect was observed. The modifying effects of tea tannin components were shown to occur in the G1 phase of the cell cycle. In cells from a patient with xeroderma pigmentosum (XP) and a normal human embryo, MMC-induced SCEs were suppressed by the posttreatment with tea tannin components in the presence of S9 mix, and enhanced in the absence of S9 mix. On the other hand, tea tannin components modified SCE frequencies in UV-irradiated normal human cells but not in UV-irradiated XP cells. Our results suggested that tea tannin components themselves inhibited DNA-excision repair and resulted in a co-mutagenic effect, while in the presence of S9 mix metabolites of tea tannin components promoted DNA-excision repair activity and resulted in an antimutagenic effect. MMC-induced chromosome aberrations in mouse bone marrow cells were suppressed by the pretreatment with green tea and black tea tannin mixture.  相似文献   

14.
B Kaina  O Aurich 《Mutation research》1985,149(3):451-461
Chinese hamster V79 cells were pulse-treated (for 60 min) with various mutagens three, two or one cell cycles before fixation (treatment variants A, B and C, respectively) and the frequencies of induced SCEs were analysed and compared. The degree of increase in frequency of SCEs with dose in the treatment variants depended on the mutagen used. For the methylating agents MNU, MNNG and DMPNU, high yields of SCEs were obtained in the treatment variants A and B, and there was no difference in the efficiency with which these agents induced SCEs in these treatment variants. In the treatment variant C, however, no SCEs were induced with mutagen doses yielding a linear increase in SCE frequency in treatment variants A and B. A slight increase in SCE frequency in treatment variant C was observed only when relatively high doses of MNU or MNNG were applied. Like the above agents, EMS, ENU and MMS induced more SCEs in treatment variants A and B than in C, but for these agents treatment variant B was most effective and SCEs were induced over the entire dose range, also in treatment variant C. As opposed to the methylating and ethylating agents, MMC induced SCEs with high efficiency when treatment occurred one or two generations prior to fixation. There was no difference in SCE frequency between these treatment variants. MMC was completely ineffective for the induction of SCEs when treatment occurred three generations before fixation. The unexpectedly low SCE frequencies induced by the methylating and ethylating agents when treatment occurred one generation before fixation were not due to the exposure of cells to BrdU prior to mutagen treatment. From the results obtained, it is concluded that DNA methylation and ethylation lesions give rise to SCEs only with very low probability during the replication cycle after the lesion's induction, and that subsequent lesions produced during or after replication of the methylated or ethylated template (secondary lesions) are of prime importance for SCE formation after alkylation. For MMC, however, primary lesions seem to be most important for SCE induction.  相似文献   

15.
The BrdU-Hoechst staining technique has been used in analyzing the effect of caffeine (CAF) on chromosome aberrations and sister-chromatid exchanges (SCEs) induced by mitomycin C (MC). CAF increased the frequency of SCE in MC-treated chromosomes in all specimens. The combination of MC and CAF caused a remarkable increase in all types of chromosome aberrations, but the most startling effect was the appearance of many cells with multiple aberrations (shattered chromosomes). The BrdU-Hoechst technique showed that the shattered chromosomes did not appear in cells that had replicated only once, but did occur in cells which replicated twice in the presence of MC and CAF. The large majority of chromatid breaks observed did not involve areas common to SCE; and the SCE frequency significantly increased in spite of the existence of multiple breaks. This indicates that very few of the breaks are incomplete exchanges and that the mechanism for formation of SCE might be different from that of chromosome breaks. In another experiment, monofunctional-MC (M-MC) had a small effect on SCE rates, though it induced shattered chromosomes with CAF post-treatment. Possible differences in the mechanisms leading to SCE and chromosome breaks are discussed.  相似文献   

16.
K Hayashi  W Schmid 《Humangenetik》1975,29(3):201-206
The incidence of structural chromosome aberrations and the rate of sister chromatid exchanges (SCE) was investigated in lymphocyte cultures from a patient with typical Fanconi's anemia and his parents. The rate of SCEs was found to be normal. In experiments with the alkylating agent Trenimon the SCE rates proved to be a sensitive indicator for the induction of structural aberrations: in presence of an induced aberration rate half as high as the spontaneous rate in the Fanconi's anemia case, the rate of SCEs was found to be quintupled. Dose-effect relationships for the induction of SCE rates by Trenimon were studied over a wide dose range in lymphocyte and fibroblast cultures. The results reflect the same difference in sensitivity earlier observed in the induction of structural chromosome aberrations, fibroblasts being far more sensitive.  相似文献   

17.
Various carcinogens were tested with regard to the induction of sister-chromatid exchanges (SCEs) and chromosome aberrations using 3 types of Bloom syndrome (BS) B-lymphoblastoid cell lines (LCLs) (type I with normal frequency of SCEs and normal karyotype; type II with high frequency of SCEs and normal karyotype; type III with high frequency of SCEs and abnormal karyotypes) in the presence and absence of S9 mix. Three types of BS B-LCLs and normal cells showed different responses to the various carcinogens in the level of SCE induction. BS type I cells had the same SCE response as normal cells to carcinogens. Some carcinogens that require metabolic activation (S9 mix) had little effect on type II cells without S9 mix but had high SCE levels with S9 mix. BS type III cells were highly susceptible to both direct and indirect carcinogens with respect to high SCE increase without S9 mix (ca. 140 SCEs/cell), though some carcinogens produced SCEs rated in the medium (ca. 120 SCEs/cell) range, and had a high rate (more than 10%) of centromere spreading (CS), in addition to quadriradials. Therefore BS type III is a unique cell line which can be used to detect carcinogens.  相似文献   

18.
O6-Methylguanine (O6-MeG) is induced in DNA by methylating environmental carcinogens and various cytostatic drugs. It is repaired by O6-methylguanine-DNA methyltransferase (MGMT). If not repaired prior to replication, the lesion generates gene mutations and leads to cell death, sister chromatid exchanges (SCEs), chromosomal aberrations and malignant transformation. To address the question of how O6-MeG is transformed into genotoxic effects, isogenic Chinese hamster cell lines either not expressing MGMT (phenotypically Mex), expressing MGMT (Mex+) or exhibiting the tolerance phenotype (Mex, methylation resistant) were compared as to their clastogenic response. Mex cells were more sensitive than Mex+ cells to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG)-induced chromosomal breakage, with marked differences in sensitivity depending on recovery time. At early recovery time, when cells out of the first post-treatment mitosis were scored, aberration frequency was about 40% reduced in Mex+ as compared to Mex cells. At later stages of recovery when cells out of the second post-treatment mitosis were analyzed, the frequency of aberrations increased strongly in Mex cells whereas it dropped to nearly control level in Mex+ cells. From this we conclude that, in the first post-treatment replication cycle of Mex cells, only a minor part of aberrations (<40%) was due to O6-MeG whereas, in the second post-treatment replication cycle, the major part of aberrations (>90%) was caused by the lesion. Thus, O6-MeG is a potent clastogenic DNA damage that needs two DNA replication cycles in order to be transformed with high efficiency into aberrations. The same holds true for sister chromatid exchanges (SCEs). MNNG is highly potent in inducing SCEs in Mex cells in the second replication cycle after alkylation. Under these conditions, SCE induction is nearly completely prevented by the expression of MGMT. This is opposed to SCE induction in the first post-treatment replication cycle, where higher doses of MNNG were required to induce SCEs and no protective effect of MGMT was observed. This indicates that SCEs induced in the first replication cycle after alkylation are due to other lesions than O6-MeG. In methylation tolerant cells, which are characterized by impaired G–T mismatch binding and MSH2 expression, aberration frequency induced by MNNG was weakly reduced in the first and strongly reduced in the second post-treatment mitoses, as compared to CHO wild-type cells. The results indicate that mismatch repair of O6-MeG–T mispairs is decisively involved in O6-MeG born chromosomal instability and recombination. We also show that Mex+ and methylation tolerant cells are more resistant than Mex cells with regard to induction of apoptosis, indicating O6-MeG to be also an apoptosis-inducing lesion. The data are discussed as to the mechanism of cytotoxicity, aberration and SCE formation in cells treated with a methylating agent.  相似文献   

19.
Sister chromatid exchanges (SCEs) are symmetrical exchanges between newly replicated chromatids and their sisters. While homologous recombination may be one of the principal mechanisms responsible for SCEs, the full details of their molecular basis and biological significance remain to be elucidated. Following exposure to ultraviolet light B (UVB), mitomycin C (MMC) and cisplatin, we analyzed the location of SCEs on metaphase chromosomes in Chinese hamster CHO cells. The frequency of SCEs increased over the spontaneous level in proportion to the agent's dose. UVB-induced SCEs occurred frequently in telomere regions, as cisplatin-induced SCEs did, differing from MMC-induced ones. The remarkable difference of intrachromosomal distribution among the three mutagens may be attributed to the specificity of induced DNA lesions and structures of different chromosome regions. Telomeric DNA at the end of chromosomes is composed of multiple copies of a repeated motif, 5'-TTAGGG-3' in mammalian cells. Telomeric repeats may be potential targets for UVB and cisplatin, which mainly form pyrimidine dimers and intrastrand d(GpG) cross-links, respectively, resulting in SCE formation. UVB irradiation shortened telomeres and augmented the telomerase activity. The possible implications of the frequent occurrence of SCEs in telomere regions are discussed in connection with the maintenance of telomere integrity.  相似文献   

20.
B K?berle  G Speit 《Mutation research》1990,243(3):225-231
Using sister-chromatid exchanges (SCEs) as an indicator for DNA damage, we investigated the role of glutathione (GSH) as a determinant of cellular sensitivity to the DNA-damaging effects of the cytostatic drugs adriamycin (AM) and cyclophosphamide (CP). Exposure of V79 cells to buthionine sulfoximine (BSO) resulted in a complete depletion of cellular GSH content without toxicity and without increasing the SCE frequency. Subsequent 3-h treatment of GSH-depleted cells with AM or S9-mix-activated CP caused a potentiation of SCE induction. In Chinese hamster ovary (CHO) cells, which showed a higher GSH level compared to V79 cells, BSO treatment led to a depletion of GSH to about 5% of the control and increased SCE induction by AM and CP. Compared to V79 cells, the effect of AM on SCE frequencies was less distinct in CHO cells, while CP exerted a similar effect in both cell lines. Pretreatment of V79 cells with GSH increased the cellular GSH content, but had no effect on the induction of SCEs by AM, and pretreatment with cysteine influenced neither GSH levels nor SCE induction by AM. The study shows that SCEs are a suitable indicator for testing the modulation of of drug genotoxicity by GSH. The importance of different GSH contents of cell lines for their response to mutagens is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号