首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Aging is associated with redistribution of body fat and the development of insulin resistance. White adipose tissue emerges as an important organ in controlling life span. Caloric restriction (CR) delays the rate of aging possibly modulated partly by altering the amount and function of adipose tissue. Adiponectin is a major adipose-derived adipokine that has anti-inflammatory and insulin-sensitizing properties. This study examined the effects of CR on adiposity and gene expression of adiponectin, its receptors (AdipoR1 and AdipoR2) in adipose tissue and in isolated adipocytes of Brown Norway rats that had undergone CR for 4 months or fed ad libitum. The study also determined plasma concentrations of adiponectin and insulin in these animals and whether insulin infusion for 7 days affects adiponectin expression and its circulating concentrations under CR conditions. CR markedly reduced body weight as anticipated, epididymal fat mass and adipocyte size. CR led to an increase in plasma free fatty acid and glycerol (both twofold), and adipose triglyceride lipase messenger RNA (mRNA) in adipose tissue and isolated adipocytes (both >2-fold). Adiponectin mRNA levels were elevated in adipose tissue and adipocytes (both >2-fold) as was plasma adiponectin concentration (2.8-fold) in CR rats. However, CR did not alter tissue or cellular AdipoR1 and AdipoR2 expression. Seven days of insulin infusion decreased adiponectin mRNA in adipose tissue but did not reverse the CR-induced up-regulation of circulating adiponectin levels. Our results suggest that the benefits of CR could be, at least in part, dependent on enhanced expression and secretion of adiponectin by adipocytes.  相似文献   

2.
It is now generally accepted that adipose tissue acts as an endocrine organ producing a number of substances with an important role in the regulation of food intake, energy expenditure and a series of metabolic processes. Adiponectin is a recently discovered protein produced exclusively by adipocytes. A number of studies have shown that obesity, insulin resistance and atherosclerosis are accompanied by decreased adiponectin levels and that adiponectin replacement under experimental settings is able to diminish both insulin resistance and atherosclerosis. The aim of this review is to summarize the current knowledge about the physiology and pathophysiology of adiponectin and to discuss its potential in the treatment of insulin resistance and atherosclerosis.  相似文献   

3.
脂蛋白酯酶与动脉粥样硬化   总被引:3,自引:0,他引:3  
脂蛋白酯酶(1ipopmtein lipase,LPL)是调节脂蛋白代谢的一种关键酶,如具有水解血浆脂蛋白中三酰甘油的作用等.体内LPL减少会导致血三酰甘油升高和高密度脂蛋白胆固醇降低,增加患动脉粥样硬化的危险.通过提高LPL的活性可以抑制动脉粥样硬化的发生发展.已有的研究说明NO-1886促进心肌和脂肪组织LPL mRNA表达,提高心肌、脂肪组织、骨骼肌和血液中LPL活性,因而改善脂蛋白代谢,抑制动脉粥样硬化.  相似文献   

4.
Objective: To test the hypothesis that adipose tissue could be one of the primary targets through which medium‐chain fatty acids (MCFAs) exert their metabolic influence. Research Methods and Procedures: Sprague‐Dawley rats were fed a control high‐fat diet compared with an isocaloric diet rich in medium‐chain triglycerides (MCTs). We determined the effects of MCTs on body fat mass, plasma leptin and lipid levels, acyl chain composition of adipose triglycerides and phospholipids, adipose tissue lipoprotein lipase activity, and the expression of key adipogenic genes. Tissue triglyceride content was measured in heart and gastrocnemius muscle, and whole body insulin sensitivity and glucose tolerance were also measured. The effects of MCFAs on lipoprotein lipase activity and adipogenic gene expression were also assessed in vitro using cultured adipose tissue explants or 3T3‐L1 adipocytes. Results: MCT‐fed animals had smaller fat pads, and they contained a considerable amount of MCFAs in both triglycerides and phospholipids. A number of key adipogenic genes were down‐regulated, including peroxisome proliferator activated receptor γ and CCAAT/enhancer binding protein α and their downstream metabolic target genes. We also found reduced adipose tissue lipoprotein lipase activity and improved insulin sensitivity and glucose tolerance in MCT‐fed animals. Analogous effects of MCFAs on adipogenic genes were found in cultured rat adipose tissue explants and 3T3‐L1 adipocytes. Discussion: These results suggest that direct inhibitory effects of MCFAs on adiposity may play an important role in the regulation of body fat development.  相似文献   

5.
The aim of this review is to present the up-to-date data about adiponectin and it's role in pathogenesis of cardiovascular disease. Adiponectin is a hormone derived from adipose tissue which regulates energy metabolism, and plays an important role in the pathogenesis of insulin resistance. Serum levels of adiponectin are reduced in obesity, hypertension, metabolic syndrome and type 2 diabetes. Moreover, plasma adiponectin concentration is inversely associated with LDL-cholesterol, TG and is positively related to HDL-cholesterol. Recent studies have indicated that adiponectin has antiinflammatory and antiatherogenic properties. Review of the data confirmed the hypothesis that adiponectin plays an important role in pathogenesis of cardiovascular disease.  相似文献   

6.
Adiponectin, an adipokine secreted from adipocytes, plays a crucial role in the regulation of glucose and lipid metabolism. In the present study, we examine the role of the IL-6 family of cytokines in the expression of adiponectin in human adipocytes derived from human adipose tissue-derived stromal cells. Oncostatin M (OSM), but not IL-6, attenuated the expression level of adiponectin dose- and time-dependently, and the inhibitory effect of OSM on adiponectin expression was as potent as that of TNF-alpha. The OSM-induced down-regulation of adiponectin expression was correlated with the down-regulation of PPARgamma2 and lipoprotein lipase, markers for adipogenic differentiation, and depletion of intracellular lipid droplets, suggesting dedifferentiation of adipocytes in response to OSM. OSM induced phosphorylation of STAT1, and treatment of adipocytes with JAK3 inhibitor WHI-P131 or MEK inhibitor U0126, but not with JAK2 inhibitor AG490, prevented the activation of STAT1. Furthermore, the OSM-induced suppression of adiponectin expression and dedifferentiation of adipocytes were ameliorated by WHI-P131 or U0126, but not by AG490. These results suggest that OSM inhibits adiponectin expression by inducing dedifferentiation of adipocytes through signaling pathways involving JAK3 and MEK, but not JAK2.  相似文献   

7.
Hepatic lipase: new insights from genetic and metabolic studies.   总被引:18,自引:0,他引:18  
Hepatic lipase catalyses the hydrolysis of triglycerides and phospholipids in all major classes of lipoproteins. Genetic deficiency of this enzyme is associated with a unique plasma lipoprotein profile, characterized by hypertriglyceridemia and elevated concentrations of intermediate density lipoproteins and HDL. Recent studies have identified common polymorphisms in the hepatic lipase gene that are associated with low hepatic lipase activity and increased concentrations of large HDL. Association studies using these polymorphisms are elucidating the effects of variation in hepatic lipase activity on plasma lipoprotein concentrations and susceptibility to coronary atherosclerosis.  相似文献   

8.
Diabetes, lipids, and adipocyte secretagogues.   总被引:17,自引:0,他引:17  
That obesity is associated with insulin resistance and type II diabetes mellitus is well accepted. Overloading of white adipose tissue beyond its storage capacity leads to lipid disorders in non-adipose tissues, namely skeletal and cardiac muscles, pancreas, and liver, effects that are often mediated through increased non-esterified fatty acid fluxes. This in turn leads to a tissue-specific disordered insulin response and increased lipid deposition and lipotoxicity, coupled to abnormal plasma metabolic and (or) lipoprotein profiles. Thus, the importance of functional adipocytes is crucial, as highlighted by the disorders seen in both "too much" (obesity) and "too little" (lipodystrophy) white adipose tissue. However, beyond its capacity for fat storage, white adipose tissue is now well recognised as an endocrine tissue producing multiple hormones whose plasma levels are altered in obese, insulin-resistant, and diabetic subjects. The consequence of these hormonal alterations with respect to both glucose and lipid metabolism in insulin target tissues is just beginning to be understood. The present review will focus on a number of these hormones: acylation-stimulating protein, leptin, adiponectin, tumour necrosis factor alpha, interleukin-6, and resistin, defining their changes induced in obesity and diabetes mellitus and highlighting their functional properties that may protect or worsen lipid metabolism.  相似文献   

9.
王芳  顾鸣敏  王铸钢 《生物磁学》2008,(8):1549-1552
脂联素(adiponectin)是一种由脂肪细胞特异性高分泌,具有多种生物学功能的特殊蛋白质它直接作用于肝脏、骨骼肌和血管,能提高胰岛素敏感性,增强脂肪酸β氧化,抵制血管炎症反应,最新研究还发现脂联素和骨生成密切相关。与其它脂肪因子不同的是,循环中脂联素的浓度与人体脂肪含量成反比,会因TNF-α的作用而上调,会被噻唑烷二酮类药物所抑制,还受到胰岛素抵抗和炎症反应的影响脂联素受体有2类,分别为AdipoR1和AdipoR2,AdipoR1主要分布在骨骼肌上,AdipoR2则高表达于肝脏组织。本文主要综述了脂联素及其受体的结构、生物学功能和研究进展。  相似文献   

10.
Lipoprotein lipase activity was higher in fat-pad pieces than in isolated adipocytes from the same fed rats, whereas hydrolysis of triacylglycerols from triacylglycerol-rich lipoproteins was similar in the two preparations when incubated either in basal conditions or in the presence of heparin. In both preparations there was a similar release of lipoprotein lipase activity into the medium during basal incubation, enhanced by the presence of heparin. In fat-pad pieces, but not in isolated adipocytes, incubation with heparin produced a decrease in the lipoprotein lipase activity measured in the tissue preparation. In fat-pad pieces from 24 h-starved rats, lipoprotein lipase activity was the same as in isolated adipocytes from the same animals and incubation with heparin did not affect the appearance of lipoprotein lipase in the medium or the utilization of triacylglycerols from triacylglycerol-rich lipoproteins. These results support the following conclusions. (1) The effectiveness of lipoprotein lipase in adipose tissue preparations in vitro depends more on its availability to the substrate than on its total activity. (2) Heparin acts on adipose tissue preparations from fed animals both by enhancing the release of pre-existing extracellular enzyme (which is absent in isolated adipocytes) and by enhancing the transfer outside the cells of the intracellular (and mainly undetectable) enzyme that is activated in the secretion process. (3) In adipose tissue from starved animals there is not only a decrease in the active extracellular form of lipoprotein lipase activity but also a reduction in the intracellular (and mainly undetectable) pool of the enzyme.  相似文献   

11.
脂肪细胞分泌产物脂联素(adiponectin,APN)的发现是脂肪内分泌学研究领域的重大进展。它主要通过与相应受体结合,发挥相应的生物学效应,且其心血管保护作用目前已成为研究热点。动脉管壁上也存在其受体,在此基础上,将APN活性区域的脂联素球状域(globular domain of adiponectin,gAd)设计为新靶点,研究其对动脉管壁的保护作用及其相关机理,将为动脉粥样硬化疾病的防治提供新方案。  相似文献   

12.
Epidemiological studies have associated low circulating levels of the adipokine adiponectin with multiple metabolic disorders, including metabolic syndrome, obesity, insulin resistance, type II diabetes, and cardiovascular disease. Recently, we reported that adiponectin selectively overexpressed in mouse macrophages can improve insulin sensitivity and protect against inflammation and atherosclerosis. To further investigate the role of adiponectin and macrophages on lipid and lipometabolism in vivo, we engineered the expression of adiponectin in mouse macrophages (Ad-TG mice) and examined effects on plasma lipoproteins and on the expression levels of genes involved in lipoprotein metabolism in tissues. Compared with the wild-type (WT) mice, Ad-TG mice exhibited significantly lower levels of plasma total cholesterol (-21%, P < 0.05) due to significantly decreased LDL (-34%, P < 0.05) and VLDL (-32%, P < 0.05) cholesterol concentrations together with a significant increase in HDL cholesterol (+41%, P < 0.05). Further studies investigating potential mechanisms responsible for the change in lipoprotein cholesterol profile revealed that adiponectin-producing macrophages altered expression of key genes in liver tissue, including apoA1, apoB, apoE, the LDL receptor, (P < 0.05), and ATP-binding cassette G1 (P < 0.01). In addition, Ad-TG mice also exhibited higher total and high-molecular-weight adipnection levels in plasma and increased expression of the anti-inflammatory cytokine IL-10 as well as a decrease in the proinflammatory cytokine IL-6 in adipose tissue. These results indicate that macrophages engineered to produce adiponectin can influence in vivo gene expression in adipose tissue in a manner that reduces inflammation and macrophage infiltration and in liver tissue in a manner that alters the circulating lipoprotein profile, resulting in a decrease in VLDL and LDL and an increase in HDL cholesterol. The data support further study addressing the use of genetically manipulated macrophages as a novel therapeutic approach for treatment of cardiometabolic disease.  相似文献   

13.
PURPOSE OF REVIEW: Several in-vitro and in-vivo animal studies indicate that endothelial lipase plays a key role in the intravascular remodeling of lipoproteins, particularly HDL. This review integrates this body of knowledge with more recent data in humans linking endothelial lipase to HDL metabolism and other features of the metabolic syndrome. RECENT FINDINGS: Human studies generally support the involvement of endothelial lipase in modulating plasma HDL. The association between endothelial lipase and metabolism of apolipoprotein B-containing lipoproteins in humans, however, has not been entirely consistent with previous findings in vitro and in animals. Finally, elevated plasma endothelial lipase has been associated with abdominal obesity and hypertension, and there is now compelling evidence that inflammation and in-vivo regulation of endothelial lipase may be intrinsically related. SUMMARY: Accumulating evidence indicates that endothelial lipase plays a role in the etiology of the atherogenic plasma lipoprotein profile characteristic of the metabolic syndrome. Increased endothelial lipase activity is linked to the underlying proinflammatory state in this condition. Further studies are required, however, to define the extent to which endothelial lipase contributes to the dyslipidemia of the metabolic syndrome relative to other important regulating factors, such as lipoprotein lipase, hepatic lipase, and cholesterol ester transfer protein.  相似文献   

14.
15.
PURPOSE OF REVIEW: Fatty acid and triacylglycerol metabolism in adipose tissue may be involved in the generation of risk factors for cardiovascular disease and type 2 diabetes. Pharmaceutical companies are targeting adipocyte metabolism in their search for drugs for treating, or reducing the risk of, these conditions. We review new developments in adipose tissue fatty acid metabolism and how that might relate to cardiovascular disease. RECENT FINDINGS: Fatty acid release from human adipose tissue is oscillatory, with a period of about 12 min. Remarkably, oscillatory fatty acid release is also seen in isolated adipocytes. Further evidence has emerged that not all adipose depots are equal, and that lower-body adipose tissue may exert protective effects against cardiovascular disease. There have been a number of developments in the area of fatty acid handling by adipocytes. Fatty acid binding proteins are clearly important in regulating fatty acid metabolism, with striking protection against atherosclerosis in mice deficient in both the binding proteins expressed in adipocytes. The demonstration that adipocytes lacking hormone-sensitive lipase still display lipolysis has led to the identification of novel lipases that may play crucial roles in adipose tissue fatty acid metabolism. Further evidence has accrued of the interaction between hormone-sensitive lipase and perilipin, the protein that coats the adipocyte lipid droplet. SUMMARY: Recent developments in our understanding of adipose tissue fatty acid metabolism open up the possibility of new pharmaceutical targets. However, interference with adipose tissue fatty acid metabolism is not to be undertaken lightly and needs a clear understanding of the normal role of adipocyte lipolysis.  相似文献   

16.
Adiponectin, an adipokine secreted by the white adipose tissue, plays an important role in regulating glucose and lipid metabolism and controlling energy homeostasis in insulin-sensitive tissues. A decrease in the circulating level of adiponectin has been linked to insulin resistance, type 2 diabetes, atherosclerosis, and metabolic syndrome. Adiponectin exerts its effects through two membrane receptors, AdipoR1 and AdipoR2. APPL1 is the first identified protein that interacts directly with adiponectin receptors. APPL1 is an adaptor protein with multiple functional domains, the Bin1/amphiphysin/rvs167, pleckstrin homology, and phosphotyrosine binding domains. The PTB domain of APPL1 interacts directly with the intracellular region of adiponectin receptors. Through this interaction, APPL1 mediates adiponectin signaling and its effects on metabolism. APPL1 also functions in insulin-signaling pathway and is an important mediator of adiponectin-dependent insulin sensitization in skeletal muscle. Adiponectin signaling through APPL1 is necessary to exert its anti-inflammatory and cytoprotective effects on endothelial cells. APPL1 also acts as a mediator of other signaling pathways by interacting directly with membrane receptors or signaling proteins, thereby playing critical roles in cell proliferation, apoptosis, cell survival, endosomal trafficking, and chromatin remodeling. This review focuses mainly on our current understanding of adiponectin signaling in various tissues, the role of APPL1 in mediating adiponectin signaling, and also its role in the cross-talk between adiponectin/insulin-signaling pathways.  相似文献   

17.
Li L  Wu LL 《生理学报》2007,59(5):614-618
脂联素是主要由白色脂肪组织分泌的一种活性多肽,具有调节脂肪酸和葡萄糖代谢、抗炎、减轻动脉粥样硬化等多种生物学功能,血浆脂联素含量降低参与了代谢性疾病及心血管疾病的发生、发展。腺苷酸活化蛋白激酶(AMP.activated protein kinase,AMPK)是脂联素信号通路中的关键信号分子,本文就其在脂联素心血管保护效应中的作用作一综述,介绍脂联素改善糖、脂代谢紊乱、动脉粥样硬化、心力衰竭及心肌缺血,再灌注损伤作用机制的新进展。  相似文献   

18.
19.
Caveolin-1 is a major structural component of raft structures within the plasma membrane and has been implicated as a regulator of cellular signal transduction with prominent expression in adipocytes. Here, we embarked on a comprehensive characterization of the metabolic pathways dysregulated in caveolin-1 null mice. We found that these mice display decreased circulating levels of total and high molecular weight adiponectin and a reduced ability to change substrate use in response to feeding/fasting conditions. Caveolin-1 null mice are extremely lean but retain muscle mass despite lipodystrophy and massive metabolic dysfunction. Hepatic gluconeogenesis is chronically elevated, while hepatic steatosis is reduced. Our data suggest that the complex phenotype of the caveolin-1 null mouse is caused by altered metabolic and mitochondrial function in adipose tissue with a subsequent compensatory response driven mostly by the liver. This mouse model highlights the central contributions of adipose tissue for system-wide preservation of metabolic flexibility.  相似文献   

20.
Tumor necrosis factor (TNF), a protein homologous to cachectin, has been implicated in mediating cachexia. This effect at least in part has been suggested to occur through the influence of the hormone on adipose tissue metabolism. Using fully differentiated 3T3-L1 adipocytes as a model system, we have been investigating the effects of recombinant TNF (rTNF) on key features of adipocyte metabolism. Exposure of fully differentiated 3T3-L1 adipocytes to recombinant tumor necrosis factor resulted in a dose and time-dependent suppression of the activity of lipoprotein lipase. The loss in activity results from an effect on the synthesis of the enzyme, as determined by a decreased incorporation of [35S]methionine into immunoprecipitable lipoprotein lipase. No effect of rTNF on the half-life of the enzyme was observed. General protein synthesis, as judged by [35S]methionine incorporation into acid-insoluble protein, was minimally affected by exposure of the cells to rTNF; this was further confirmed by sodium dodecyl sulfate-polyacrylamide gel analysis of total cellular protein. As opposed to our previously reported results with crude preparations of TNF, no effect on either the ability of the adipocytes to synthesize and store or mobilize triacylglycerol was observed. Our results are consistent with the hypothesis that other hormones present in crude preparations of TNF acting either alone or synergistically with TNF play a major role in the further metabolic derangements associated with adipose tissue during cachexia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号