首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In humans, inclusion or exclusion of the fibronectin EDA exon is mainly regulated by a polypurinic enhancer element (exonic splicing enhancer [ESE]) and a nearby silencer element (exonic splicing silencer [ESS]). While human and mouse ESEs behave identically, mutations introduced into the homologous mouse ESS sequence result either in no change in splicing efficiency or in complete exclusion of the exon. Here, we show that this apparently contradictory behavior cannot be simply accounted for by a localized sequence variation between the two species. Rather, the nucleotide differences as a whole determine several changes in the respective RNA secondary structures. By comparing how the two different structures respond to homologous deletions in their putative ESS sequences, we show that changes in splicing behavior can be accounted for by a differential ESE display in the two RNAs. This is confirmed by RNA-protein interaction analysis of levels of SR protein binding to each exon. The immunoprecipitation patterns show the presence of complex multi-SR protein-RNA interactions that are lost with secondary-structure variations after the introduction of ESE and ESS variations. Taken together, our results demonstrate that the sequence context, in addition to the primary sequence identity, can heavily contribute to the making of functional units capable of influencing pre-mRNA splicing.  相似文献   

2.
J Zhu  A Mayeda  A R Krainer 《Molecular cell》2001,8(6):1351-1361
SR proteins recognize exonic splicing enhancer (ESE) elements and promote exon use, whereas certain hnRNP proteins bind to exonic splicing silencer (ESS) elements and block exon recognition. We investigated how ESS3 in HIV-1 tat exon 3 blocks splicing promoted by one SR protein (SC35) but not another (SF2/ASF). hnRNP A1 mediates silencing by binding initially to a required high-affinity site in ESS3, which then promotes further hnRNP A1 association with the upstream region of the exon. Both SC35 and SF2/ASF recognize upstream ESE motifs, but only SF2/ASF prevents secondary hnRNP A1 binding, presumably by blocking its cooperative propagation along the exon. The differential antagonism between a negative and two positive regulators exemplifies how inclusion of an alternative exon can be modulated.  相似文献   

3.
4.
The idea that point mutations in exons may affect splicing is intriguing and adds an additional layer of complexity when evaluating their possible effects. Even in the best-studied examples, the molecular mechanisms are not fully understood. Here, we use patient cells, model minigenes, and in vitro assays to show that a missense mutation in exon 5 of the medium-chain acyl-CoA dehydrogenase (MCAD) gene primarily causes exon skipping by inactivating a crucial exonic splicing enhancer (ESE), thus leading to loss of a functional protein and to MCAD deficiency. This ESE functions by antagonizing a juxtaposed exonic splicing silencer (ESS) and is necessary to define a suboptimal 3′ splice site. Remarkably, a synonymous polymorphic variation in MCAD exon 5 inactivates the ESS, and, although this has no effect on splicing by itself, it makes splicing immune to deleterious mutations in the ESE. Furthermore, the region of MCAD exon 5 that harbors these elements is nearly identical to the exon 7 region of the survival of motor neuron (SMN) genes that contains the deleterious silent mutation in SMN2, indicating a very similar and finely tuned interplay between regulatory elements in these two genes. Our findings illustrate a mechanism for dramatic context-dependent effects of single-nucleotide polymorphisms on gene-expression regulation and show that it is essential that potential deleterious effects of mutations on splicing be evaluated in the context of the relevant haplotype.  相似文献   

5.
6.
The removal of the second intron in the HIV-1 rev/tat pre-mRNAs, which involves the joining of splice site SD4 to SA7, is inhibited by hnRNP A1 by a mechanism that requires the intronic splicing silencer (ISS) and the exon splicing silencer (ESS3). In this study, we have determined the RNA secondary structure and the hnRNP A1 binding sites within the 3' splice site region by phylogenetic comparison and chemical/enzymatic probing. A biochemical characterization of the RNA/protein complexes demonstrates that hnRNP A1 binds specifically to primarily three sites, the ISS, a novel UAG motif in the exon splicing enhancer (ESE) and the ESS3 element, which are all situated in experimentally supported stem loop structures. A mutational analysis of the ISS region revealed that the core hnRNP A1 binding site directly overlaps with a major branchpoint used in splicing to SA7, thereby providing a direct explanation for the inhibition of U2 snRNP association with the pre-mRNA by hnRNP A1. Binding of hnRNP A1 to the ISS core site is inhibited by RNA structure but strongly stimulated by the exonic silencer, ESS3. Moreover, the ISS also stimulate binding of hnRNP A1 to the exonic splicing regulators ESS3 and the ESE. Our results suggest a model where a network is formed between hnRNP A1 molecules situated at discrete sites in the intron and exon and that these interactions preclude the recognition of essential splicing signals including the branch point.  相似文献   

7.
Intron removal from a pre-mRNA by RNA splicing was once thought to be controlled mainly by intron splicing signals. However, viral and other eukaryotic RNA exon sequences have recently been found to regulate RNA splicing, polyadenylation, export, and nonsense-mediated RNA decay in addition to their coding function. Regulation of alternative RNA splicing by exon sequences is largely attributable to the presence of two majorcis-acting elements in the regulated exons, the exonic splicing enhancer (ESE) and the suppressor or silencer (ESS). Two types of ESEs have been verified from more than 50 genes or exons: purine-rich ESEs, which are the more common, and non-purine-rich ESEs. In contrast, the sequences of ESSs identified in approximately 20 genes or exons are highly diverse and show little similarity to each other. Through interactions with cellular splicing factors, an ESE or ESS determines whether or not a regulated splice site, usually an upstream 3 splice site, will be used for RNA splicing. However, how these elements function precisely in selecting a regulated splice site is only partially understood. The balance between positive and negative regulation of splice site selection likely depends on thecis-element's identity and changes in cellular splicing factors under physiological or pathological conditions.  相似文献   

8.
Sequence-specific recognition of nucleic-acid motifs is critical to many cellular processes. We have developed a new and general method called Neighborhood Inference (NI) that predicts sequences with activity in regulating a biochemical process based on the local density of known sites in sequence space. Applied to the problem of RNA splicing regulation, NI was used to predict hundreds of new exonic splicing enhancer (ESE) and silencer (ESS) hexanucleotides from known human ESEs and ESSs. These predictions were supported by cross-validation analysis, by analysis of published splicing regulatory activity data, by sequence-conservation analysis, and by measurement of the splicing regulatory activity of 24 novel predicted ESEs, ESSs, and neutral sequences using an in vivo splicing reporter assay. These results demonstrate the ability of NI to accurately predict splicing regulatory activity and show that the scope of exonic splicing regulatory elements is substantially larger than previously anticipated. Analysis of orthologous exons in four mammals showed that the NI score of ESEs, a measure of function, is much more highly conserved above background than ESE primary sequence. This observation indicates a high degree of selection for ESE activity in mammalian exons, with surprisingly frequent interchangeability between ESE sequences.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) pre-mRNA splicing is regulated in order to maintain pools of unspliced and partially spliced viral RNAs as well as the appropriate levels of multiply spliced mRNAs during virus infection. We have previously described an element in tat exon 2 that negatively regulates splicing at the upstream tat 3' splice site 3 (B. A. Amendt, D. Hesslein, L.-J. Chang, and C. M. Stoltzfus, Mol. Cell. Biol. 14:3960-3970, 1994). In this study, we further defined the element to a 20-nucleotide (nt) region which spans the C-terminal vpr and N-terminal tat coding sequences. By analogy with exon splicing enhancer (ESE) elements, we have termed this element an exon splicing silencer (ESS). We show evidence for another negative cis-acting region within tat-rev exon 3 of HIV-1 RNA that has sequence motifs in common with a 20-nt ESS element in tat exon 2. This sequence is juxtaposed to a purine-rich ESE element to form a bipartite element regulating splicing at the upstream tat-rev 3' splice site. Inhibition of the splicing of substrates containing the ESS element in tat exon 2 occurs at an early stage of spliceosome assembly. The inhibition of splicing mediated by the ESS can be specifically abrogated by the addition of competitor RNA. Our results suggest that HIV-1 RNA splicing is regulated by cellular factors that bind to positive and negative cis elements in tat exon 2 and tat-rev exon 3.  相似文献   

10.
The human CD45 gene encodes five isoforms of a transmembrane tyrosine phosphatase that differ in their extracellular domains as a result of alternative splicing of exons 4-6. Expression of the CD45 isoforms is tightly regulated in peripheral T cells such that resting cells predominantly express the larger CD45 isoforms, encoded by mRNAs containing two or three variable exons. In contrast, activated T cells express CD45 isoforms encoded by mRNAs lacking most or all of the variable exons. We have previously identified the sequences within CD45 variable exon 4 that control its level of inclusion into spliced mRNAs. Here we map the splicingregulatory sequences within CD45 variable exons 5 and 6. We show that, like exon 4, exons 5 and 6 each contain an exonic splicing silencer (ESS) and an exonic splicing enhancer (ESE), which together determine the level of exon inclusion in na?ve cells. We further demonstrate that the primary activation-responsive silencing motif in exons 5 and 6 is homologous to that in exon 4 and, as in exon 4, binds specifically to the protein heterogeneous nuclear ribonucleoprotein L. Together these studies reveal common themes in the regulation of the CD45 variable exons and provide a mechanistic explanation for the observed physiological expression of CD45 isoforms.  相似文献   

11.
Silencer elements as possible inhibitors of pseudoexon splicing   总被引:8,自引:5,他引:3       下载免费PDF全文
Human pre-mRNAs contain a definite number of exons and several pseudoexons which are located within intronic regions. We applied a computational approach to address the question of how pseudoexons are neglected in favor of exons and to possibly identify sequence elements preventing pseudoexon splicing. A search for possible splicing silencers was carried out on a pseudoexon selection that resembled exons in terms of splice site strength and exon splicing enhancer (ESE) representation; three motifs were retrieved through hexamer composition comparisons. One of these functions as a powerful silencer in transfection-based splicing assays and matches a previously identified silencer sequence with hnRNP H binding ability. The other two motifs are novel and failed to induce skipping of a constitutive exon, indicating that they might act as weak repressors or in synergy with other unidentified elements. All three motifs are enriched in pseudoexons compared with intronic regions and display higher frequencies in intronless gene-coding sequences compared with exons. We consider that a subpopulation of pseudoexons might rely on negative regulators for splicing repression; this hypothesis, if experimentally verified, might improve our understanding of exonic splicing regulatory sequences and provide the identification of a novel mutation target for human genetic diseases.  相似文献   

12.
Mitochondrial ATP synthase gamma-subunit (F(1)gamma) pre-mRNA undergoes alternative splicing in a tissue- or cell type-specific manner. Exon 9 of F(1)gamma pre-mRNA is specifically excluded in heart and skeletal muscle tissues and in acid-stimulated human fibrosarcoma HT1080 cells, rhabdomyosarcoma KYM-1 cells, and mouse myoblast C2C12 cells. Recently, we found a purine-rich exonic splicing enhancer (ESE) element on exon 9 via transgenic mice bearing F(1)gamma mutant minigenes and demonstrated that this ESE functions ubiquitously with exception of muscle tissue (Ichida, M., Hakamata, Y., Hayakawa, M., Ueno E., Ikeda, U., Shimada, K., Hamamoto, T., Kagawa, Y., Endo, H. (2000) J. Biol. Chem. 275, 15992-16001). Here, we identified an exonic negative regulatory element responsible for muscle-specific exclusion of exon 9 using both in vitro and in vivo splicing systems. A supplementation assay with nuclear extracts from HeLa cells and acid-stimulated HT1080 cells was performed for an in vitro reaction of muscle-specific alternative splicing of F(1)gamma minigene and revealed that the splicing reaction between exons 8 and 9 was the key step for regulation of muscle-specific exon exclusion. Polypyrimidine tract in intron 8 requires ESE on exon 9 for constitutive splice site selection. Mutation analyses on the F(1)gammaEx8-9 minigene using a supplementation assay demonstrated that the muscle-specific negative regulatory element is positioned in the middle region of exon 9, immediately downstream from ESE. Detailed mutation analyses identified seven nucleotides (5'-AGUUCCA-3') as a negative regulatory element responsible for muscle-specific exon exclusion. This element was shown to cause exon skipping in in vivo splicing systems using acid-stimulated HT1080 cells after transient transfection of several mutant F(1)gammaEx8-9-10 minigenes. These results demonstrated that the 5'-AGUUCCA-3' immediately downstream from ESE is a muscle-specific exonic splicing silencer (MS-ESS) responsible for exclusion of exon 9 in vivo and in vitro.  相似文献   

13.
14.
15.
We examine here the roles of cellular splicing factors and virus regulatory proteins in coordinately regulating alternative splicing of the tat/rev mRNA of equine infectious anemia virus (EIAV). This bicistronic mRNA contains four exons; exons 1 and 2 encode Tat, and exons 3 and 4 encode Rev. In the absence of Rev expression, the four-exon mRNA is synthesized exclusively, but when Rev is expressed, exon 3 is skipped to produce an mRNA that contains only exons 1, 2, and 4. We identify a purine-rich exonic splicing enhancer (ESE) in exon 3 that promotes exon inclusion. Similar to other cellular ESEs that have been identified by other laboratories, the EIAV ESE interacted specifically with SR proteins, a group of serine/arginine-rich splicing factors that function in constitutive and alternative mRNA splicing. Substitution of purines with pyrimidines in the ESE resulted in a switch from exon inclusion to exon skipping in vivo and abolished binding of SR proteins in vitro. Exon skipping was also induced by expression of EIAV Rev. We show that Rev binds to exon 3 RNA in vitro, and while the precise determinants have not been mapped, Rev function in vivo and RNA binding in vitro indicate that the RNA element necessary for Rev responsiveness overlaps or is adjacent to the ESE. We suggest that EIAV Rev promotes exon skipping by interfering with SR protein interactions with RNA or with other splicing factors.  相似文献   

16.
Point mutations frequently cause genetic diseases by disrupting the correct pattern of pre-mRNA splicing. The effect of a point mutation within a coding sequence is traditionally attributed to the deduced change in the corresponding amino acid. However, some point mutations can have much more severe effects on the structure of the encoded protein, for example when they inactivate an exonic splicing enhancer (ESE), thereby resulting in exon skipping. ESEs also appear to be especially important in exons that normally undergo alternative splicing. Different classes of ESE consensus motifs have been described, but they are not always easily identified. ESEfinder (http://exon.cshl.edu/ESE/) is a web-based resource that facilitates rapid analysis of exon sequences to identify putative ESEs responsive to the human SR proteins SF2/ASF, SC35, SRp40 and SRp55, and to predict whether exonic mutations disrupt such elements.  相似文献   

17.
Primary chicken mesenchymal cells from limb buds and vertebral chondrocytes have been used to study the changes that occur in alternative mRNA splicing of fibronectin exon EIIIA during chondrogenesis. The mesenchymal cell phenotype (exon EIIIA included) and chondrocyte phenotype (exon EIIIA excluded) were preserved in culture. Both primary cell types were transfected with an EIIIA minigene and alternative splicing was monitored by S1 protection assay. Differential cell-specific splicing of the reporter was observed. The roles of two regulatory elements, an exon splicing enhancer (ESE) and an exon splicing silencer (ESS) were examined. Both elements were required for EIIIA inclusion into mRNA in mesenchymal cells. Gel mobility shift assays revealed that both chondrocyte- and mesenchymal cell-derived nuclear extracts contained exon EIIIA binding factors, but the RNA binding factors present in the two cell types appeared to be distinct. The ESE and ESS appeared to cooperate in the formation of both cell type-specific complexes. These results suggest a model in which inhibitory factors enriched in chondrocytes compete with positive factors enriched in mesenchymal cells for binding to exon EIIIA, determining whether the exon is included.  相似文献   

18.
19.
Research on exonic coding sequences has demonstrated that many substitutions at the amino acid level may also reflect profound changes at the level of splicing regulatory regions. These results have revealed that, for many alternatively spliced exons, there is considerable pressure to strike a balance between two different and sometimes conflicting forces: the drive to improve the quality and production efficiency of proteins and the maintenance of proper exon recognition by the splicing machinery. Up to now, the systems used to investigate these connections have mostly focused on short alternatively spliced exons that contain a high density of splicing regulatory elements. Although this is obviously a desirable feature in order to maximize the chances of spotting connections, it also complicates the process of drawing straightforward evolutionary pathways between different species (because of the numerous alternative pathways through which the same end point can be achieved). The alternatively spliced fibronectin extra domain A exon (also referred to as EDI or EIIIA) does not have these limitations, as its inclusion is already known to depend on a single exonic splicing enhancer element within its sequence. In this study, we have compared the rat and human fibronectin EDA exons with regard to RNA structure, exonic splicing enhancer strengths, and SR protein occupancy. The results gained from these analyses have then been used to perform an accurate evaluation of EDA sequences observed in a wide range of animal species. This comparison strongly suggests the existence of an evolutionary connection between changes at the nucleotide levels and the need to maintain efficient EDA recognition in different species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号