首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 106 毫秒
1.
目的:探讨L-亮氨酸对克隆的胰岛β细胞株INS-1E细胞分泌胰岛素的刺激作用及其葡萄糖依赖性。方法:INS-1E细胞经传代培养2 d后,在Krebs-Ringer缓冲液中37℃培养箱预培养30 min,再用含有不同浓度葡萄糖和不同浓度L-亮氨酸的改良Krebs-Ringer缓冲液培养60 min,然后留取上清液进行胰岛素测定。结果:L-亮氨酸在0.1~10 mmol.L-1范围不增加16.7mmol.L-1葡萄糖刺激的INS-1E细胞的胰岛素分泌,仅20 mmol.L-1的L-亮氨酸促进葡萄糖诱导的胰岛素分泌;10 mmol.L-1L-亮氨酸在1.1、3.3、6.7 mmol.L-1葡萄糖存在的情况下促进INS-1E细胞的胰岛素分泌,而在11.1、16.7、25 mmol.L-1葡萄糖存在的情况下无促进胰岛素分泌的作用。结论:本研究显示在无刺激胰岛素分泌的葡萄糖浓度条件下,10 mmol.L-1L-亮氨酸即显示了刺激INS-1E细胞分泌胰岛素的作用,在较高葡萄糖的条件下,10 mmol.L-1L-亮氨酸的作用减弱或消失。  相似文献   

2.
探讨L-丙氨酸刺激小鼠胰岛分泌胰岛素的剂量和葡萄糖依赖性。雌性6~10周NMRI小鼠,苯巴比妥腹腔麻醉,应用胶原酶技术消化胰腺分离胰岛,置于RPMI1640培养皿中在37℃培养箱(5%CO2,95%空气)过夜培养。次日在Krebs-Ringer缓冲液中37℃水浴培养箱预培养30 min,分别把单个胰岛小心放入100 L含有不同浓度葡萄糖和不同浓度L-丙氨酸的改良Krebs-Ringer缓冲液37℃水浴培养箱培养60 min,留取50 L上清液进行胰岛素测定。结果:L-丙氨酸在0.1~20mmol.L-1范围促进了葡萄糖刺激的小鼠胰岛的胰岛素分泌,随剂量增大而增强,在低浓度葡萄糖存在的条件下,10 mmol.L-1L-丙氨酸不能刺激小鼠胰岛的胰岛素分泌,在6.7 mmol.L-1及以上葡萄糖存在的条件下,L-丙氨酸能增加葡萄糖诱导的小鼠胰岛分泌胰岛素。本研究显示L-丙氨酸能增加葡萄糖诱导的小鼠胰岛分泌胰岛素,此作用依赖于一定水平葡萄糖的存在。  相似文献   

3.
目的:建立胰岛细胞系INS-1E细胞的葡萄糖毒性模型。方法:将INS-1E细胞分别在不同葡萄糖浓度(5.5 mmol/L、16.7mmol/L、25 mmol/L、30 mmol/L)的1640完全培养基中培养不同时间(48 h、72 h、96 h、120 h),分别在不同时间点取细胞进行细胞功能检测,实时荧光定量PCR法检测胰岛素m RNA的表达,ELISA检测葡萄糖刺激的胰岛素的分泌。结果:与对照组相比,高糖浓度(5.5 mmol/L、16.7 mmol/L、25 mmol/L、30 mmol/L)培养基中培养48 h后,INS-1E细胞的胰岛素合成和分泌的功能均增加(P均0.05),随着培养基中葡萄糖浓度的升高以及培养时间的延长,INS-1E细胞胰岛素合成及分泌的功能逐渐下降,当在葡萄糖浓度为30 mmol/L的培养基中培养120 h后,胰岛素m RNA合成及葡萄糖刺激的胰岛素分泌均显著降低(P均0.01)。结论:INS-1E细胞在30 m M的葡萄糖中培养120 h形成稳定的葡萄糖毒性模型。  相似文献   

4.
为了考察20-羟基二十碳四烯酸(20-hydroxyeicosatetraenoic acids, 20-HETE)对葡萄糖刺激胰岛素分泌反应的影响,本研究选择CYP4F2转基因小鼠和小鼠胰岛素瘤INS-1E细胞作为研究材料,通过LCMS/MS检测WT和TG小鼠的胰腺20-HETE水平。通过IPGTT测定小鼠葡萄糖耐量,通过ELISA测定小鼠血浆C肽水平来检测胰岛素分泌。通过Western blotting、Real time PCR、免疫组化和免疫荧光来检测小鼠胰腺或INS-1E细胞中Glut2、GSK-3β(Ser9点)和AKT (Ser473点)的磷酸化水平。TG小鼠的20-HETE水平((7.26±2.03) ng/mg蛋白)显著高于WT小鼠((2.14±0.76) ng/mg蛋白)。在用20-HETE合成的选择性抑制剂HET0016处理后,TG小鼠((0.33±0.07) ng/mg蛋白)和WT小鼠((0.27±0.06) ng/mg蛋白)胰腺组织中的20-HETE水平均急剧降低。给予葡萄糖处理30 min后,TG小鼠的血糖水平均显著高于WT小鼠,而血浆C肽水平显著低于WT小鼠(p<0.05)。与WT小鼠相比,TG小鼠的胰腺组织中Glut2 m RNA和蛋白水平显著降低。与WT小鼠相比,CYP4F2转基因小鼠的GSK-3β和AKT磷酸化均显著降低。20-HETE处理可导致INS-1E细胞中AKT/GSK-3β磷酸化水平和Glut2表达水平显著降低(p<0.05)。此外,用17 mmol/L葡萄糖处理INS-1E细胞1 h,20-HETE处理组的胰岛素分泌显著降低。应用GSK-3β选择性抑制剂TWS119预处理INS-1E细胞3 h后,TWS119 (一种GSK-3β选择性抑制剂)预处理显著逆转了Glut2表达水平的降低以及胰岛素分泌的减少。20-HETE主要通过AKT/GSK-3β信号通路来下调Glut2的表达,进而减弱胰岛素分泌,导致胰岛素分泌功能障碍。  相似文献   

5.
产L—肉碱的菌种筛选及发酵条件优化   总被引:1,自引:1,他引:0  
将D,L-肉碱(carnitine,β-羟基-γ-三甲胺丁酸)用浓硫酸脱水获得反-巴豆甜菜碱(trans-crotonobetaine),从本室保藏的菌株中筛选出1株能将反-巴豆甜菜碱非对称合成L-肉碱的菌株E.coliK74.利用它的休止细胞立体选择性地水合反-巴豆甜菜碱产生L-肉碱,起催化作用的酶是L-肉碱脱水酶,是一种可诱导的胞内酶,当培养基中加入反-巴豆甜菜碱并在部分厌氧条件下可诱导产生.如培养基中含有葡萄糖、硝酸盐或氧时,酶的合成受到抑制,在磷酸缓冲液中,E.coliK74休止细胞的最适反应条件是pH为7.8,温度为37~42℃.  相似文献   

6.
目的:观察高糖毒性对大鼠胰岛细胞系INS-1细胞中血红素氧合酶1蛋白表达的损害作用,并研究信号分子刺激下细胞损伤的自我保护机制.方法:分别采用不同葡萄糖浓度孵育或葡萄糖代谢物葡萄糖胺持续孵育培养INS-1细胞,造成高糖毒性损伤,进而采用胰岛素以及核转录因子Nrf2激动剂莱芜硫烷刺激细胞保护信号机制改善损伤,蛋白印迹法检测细胞中血红素氧合酶1的表达情况.结果:高浓度葡萄糖溶液中(25 mM)孵育INS-1细胞48小时,血红素氧合酶1的表达水平较正常情况显著下降(P<0.05).高浓度葡萄糖与葡萄糖胺共刺激对实验细胞中血红素氧合酶1的表达下调具有协同作用.胰岛素对实验细胞中血红素氧合酶1表达具有上调作用,但上调作用强度随培养环境中葡萄糖浓度的增高而降低.核转录因子Nrf2激动剂莱芜硫烷孵育处理实验细胞后,胞内血红素氧合酶1表达水平在葡萄糖胺刺激下上调,且与培养环境中葡萄糖浓度水平无关(P<0.05).结论:高糖毒性可损害胰岛β细胞内抗氧化酶-血红素氧合酶Ⅰ的表达,而胰岛素可激活下游通路尤其是Nrf2信号通路,对抗高糖诱导的氧化应激损伤,从而保护胰岛细胞.  相似文献   

7.
细胞色素c(Cyt c)诱导烟草悬浮细胞(BY-2)凋亡   总被引:3,自引:0,他引:3  
用不同浓度细胞色素c(Cyt c)诱导继代时间不同的烟草悬浮细胞48 h后观察形态学特征的结果表明,继代培养10和13 d的细胞均在10 mmol·L-1Cyt c时出现最高的细胞凋亡率,而继代5 d的细胞在Cyt c浓度为12.5 mmol·L-1时细胞凋亡的诱导率仍表现上升趋势;DNA电泳检测结果显示凋亡处理的细胞中DNA呈现较明显的DNA梯度.  相似文献   

8.
采用全细胞膜片钳技术观察不同浓度葡萄糖对新生Wister大鼠胰岛β细胞膜上电压依赖性L-型钙离子通道门控特性的影响,即分别用2.8、5.5、16.7和22.2 mmol/L的葡萄糖刺激单个贴壁胰岛β细胞,以Ba2+作为载流子,分析比较葡萄糖对L-型钙通道电流的影响。结果显示:在低糖(2.8 mmol/L)情况下,大鼠胰岛β细胞电压依赖性L-型钙离子通道电流静息膜电位约为-70 mV,钙离子内流不明显,且无明显的时间依赖性关系。在葡萄糖浓度为5.5 mmol/L的条件下,大鼠胰岛β细胞电压依赖性L-型钙离子通道电流在-40 mV激活, +20 mV左右达峰值;高糖(16.7 mmol/L)作用胰岛β细胞后,电压依赖性L-型钙离子通道电流约-40 mV激活,+10 mV左右达峰值,即峰值电位向负方向移动约10 mV;葡萄糖浓度达22.2 mmol/L时,电活动呈持续性去极化,峰值电位增加不明显,提示葡萄糖降低胰岛β细胞电压依赖性L-型钙通道电流的激活电位阈值,促进其开放,钙电流峰值电位增加,随着高糖作用时间的延长,胰岛β细胞容积变大,细胞膜破坏。提示高浓度葡萄糖在一定范围内可以刺激胰岛素的分泌,但浓度过高则可抑制胰岛素的分泌,通过观察葡萄糖刺激的胰岛β细胞胰岛素第一时相分泌的变化,在一定程度上对高糖毒性作用的可能提供了证据。  相似文献   

9.
在建立霍山石斛的液体悬浮培养技术的基础上,添加诱导子硝普钠(SNP)、植酸(PA)和水杨酸(SA)。3种诱导子均可促进霍山石斛原球茎中生物碱的积累,0.1mmol·L-1SNP、7.5g·L-1PA和100μmol·L-1SA处理的原球茎,其生物碱含量分别为不作处理的2.02倍、1.84倍和1.62倍。促进霍山石斛生物碱积累的适宜诱导子为SNP,其适宜浓度为0.1mmol·L-1。高浓度的3种诱导子均导致培养液酸化,原球茎的相对电导率上升,其生物量和生物碱含量明显下降。  相似文献   

10.
高糖诱导小鼠囊胚Caspase-3的表达及其意义   总被引:3,自引:0,他引:3  
目的探讨高浓度葡萄糖对小鼠囊胚的影响,为防治糖尿病妊娠导致胚胎发育畸形的机制进一步提供理论依据.方法用含不同浓度(0 mmol/L、7.5mmol/L、28.0 mmol/L)D-葡萄糖的培养基体外培养小鼠囊胚24h,再用免疫组织化学S-P法检测小鼠囊胚中Caspase-3的表达.结果用含高浓度葡萄糖培养基培养的小鼠囊胚Caspase-3的表达呈强阳性.结论高浓度葡萄糖对小鼠囊胚有毒性作用,可诱导小鼠囊胚细胞的凋亡,Caspase-3参与了高浓度葡萄糖诱导囊胚细胞的凋亡作用.  相似文献   

11.
12.
13.
Objective of this study was to characterize osmotically-induced insulin secretion in two tumor cell lines. We compared response of freshly isolated rat pancreatic islets and INS-1 and INS-1E tumor cell lines to high glucose, 30 % hypotonic medium and 20 % hypertonic medium. In Ca(2+)-containing medium glucose induced insulin release in all three cell types. Hypotonicity induced insulin secretion from islets and INS-1 cells but not from INS-1E cells, in which secretion was inhibited despite similar increase in cell volume in both cell types. GdCl(3) (100 micromol/l) did not affect insulin response from INS-1E cells to hypotonic challenge. Hypertonic medium inhibited glucose-induced insulin secretion from islets but not from tumor cells. Noradrenaline (1 micromol/l) inhibited glucose-induced but not swelling-induced insulin secretion from INS-1 cells. Surprisingly, perifusion with Ca(2+)-depleted medium showed distinct secretory response of INS-1E cells to hypotonicity while that of INS-1 cells was partially inhibited. Functioning glucose-induced insulin secretion is not sufficient prerequisite for hypotonicity-induced response in INS-1E cells suggesting that swelling-induced exocytosis is not essential step in the mechanism mediating glucose-induced insulin secretion. Both cell lines are resistant to inhibitory effect of hyperosmolarity on glucose-induced insulin secretion. Response of INS-1E cells to hypotonicity is inhibited by the presence of Ca(2+) in medium.  相似文献   

14.
Uncoupling protein 2 (UCP2) regulates glucose-stimulated insulin secretion in pancreatic beta-cells. UCP2 content, measured by calibrated immunoblot in INS-1E insulinoma cells (a pancreatic beta-cell model) grown in RPMI medium, and INS-1E mitochondria, was 2.0 ng/million cells (7.9 ng/mg mitochondrial protein). UCP2 content was lower in cells incubated without glutamine and higher in cells incubated with 20 mM glucose, and varied from 1.0-4.4 ng/million cells (2.7-14.5 ng/mg mitochondrial protein). This dynamic response to nutrients was achieved by varied expression rates against a background of a very short UCP2 protein half-life of about 1 h.  相似文献   

15.
Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as a surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with 31P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by 13C NMR isotopomer analysis of the fate of [U-13C] glucose metabolism.Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15 mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found to be similar in DMEM to those in KRB. And, the correlation of total PC flux with insulin secretion rates in DMEM was found to be congruous with the correlation in KRB. Together, these results suggest that signaling mechanisms associated with both TCA cycle flux and with anaplerotic flux, but not ATP production, may be responsible for the enhanced rates of insulin secretion in more complex, and physiologically-relevant media.  相似文献   

16.
Procyanidins have positive effects on glucose metabolism in conditions involving slightly disrupted glucose homeostasis, but it is not clear how procyanidins interact with β-cells. In this work, we evaluate the effects of procyanidins on β-cell functionality under an insulin-resistance condition. After 13 weeks of cafeteria diet, female Wistar rats were treated with 25 mg of grape seed procyanidin extract (GSPE)/kg of body weight (BW) for 30 days. To determine the possible mechanisms of action of procyanidins, INS-1E cells were separately incubated in high-glucose, high-insulin and high-oleate media to reproduce the conditions the β-cells were subjected to during the cafeteria diet feeding. In vivo experiments showed that chronic GSPE treatment decreased insulin production, since C-peptide levels and insulin protein levels in plasma were lower than those of cafeteria-fed rats, as were insulin and Pdx1 mRNA levels in the pancreas. GSPE effects observed in vivo were reproduced in INS-1E cells cultured with high oleate for 3 days. GSPE treatment significantly reduces triglyceride content in β-cells treated with high oleate and in the pancreas of cafeteria-fed rats. Moreover, gene expression analysis of the pancreas of cafeteria-fed rats revealed that procyanidins up-regulated the expression of Cpt1a and down-regulated the expression of lipid synthesis-related genes such as Fasn and Srebf1. Procyanidin treatment counteracted the decrease of AMPK protein levels after cafeteria treatment. Procyanidins cause a lack of triglyceride accumulation in β-cells. This counteracts its negative effects on insulin production, allowing for healthy levels of insulin production under hyperlipidemic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号