首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The ripe carob pod (pericarp) is rich in water-soluble sugars, mainly sucrose (63% on total sugars). Sucrose crystallization from aqueous carob extract is prevented by its reducing sugar content. The selective consumption of these sugars by mixed culture ofRhizopus oligosporus andSaccharomyces rouxii gives a sucrose syrup suitable for several uses e.g. sucrose extraction.  相似文献   

2.
Summary The kinetics of growth and the chemical composition ofFusarium moniliforme cultivated on aqueous carob pod extract were investigated. The extract was adjusted to provide 0.5, 1.0, 2.0 and 4.0% carob sugars supplemented with inorganic salts at the ratio: carob sugar: NH4H2PO4: MgSO4.7H2O=1:0.6:0.012. The extract contained 16 mg tannic acid (Folin-Dennis) per g of carob sugar.The phase of vigorous growth was exponential. Tannins were not observed to depress growth. The maximum value of 0.22 h–1 for a specific growth rate corresponding to a generation time of 3.15 h was obtained when the fungus was cultivated on a 4% carob sugar medium. The dry mycelium produced per g of consumed carob sugar was then 0.515 g.The protein and purine content was affected by the composition of the growth medium. Protein values up to 37.7% true (Lowry) and 53.1% crude (NX6.25) of dry mycelium were recorded. Mean purine contents were 89 and 116 mol/g, corresponding to nucleic acid levels of 5.7 and 7.5% for mycelium grown on 0.5 and 4.0% carob sugar respectively.These findings linked with those previously reported regarding the good appearance and nutritional quality ofF. moniliforme (Drouliscos et al., 1976) make this fungus worthy of consideration for the production of protein.  相似文献   

3.
Summary Inhibitory extracts of carob and abscisic acid (ABA) were compared and found to behave differently in three types of tests. The carob inhibitors remained at the origin upon thin-layer chromatography in two different solvent systems while a cis-trans mixture of ABA had Rf's of 2.5 and 3.5 in the first system (chloroform:acetic acid, 95:5), and 3.5 and 4.5 in the second system (benzene:acetic acid:water, 8:3:5). When ABA and carob extract were mixed and then chromatographed, the ABA had the same Rf values as ABA chromatographed alone.Assays utilizing light-grown, dwarf peas showed that a weight ratio of 1000: 1 ABA:gibberellic acid (GA3) was necessary to inhibit GA3-induced growth by 50% while carob fraction C is inhibitory to GA3 at a ratio of 17:1. The amount of ABA which inhibited 50% of the growth induced by 0.05 g GA3 reduced the endogenous growth of both dwarf and non-dwarf pea seedlings; in contrast, concentrations of carob extract up to 100 times greater than the amount necessary for 50% inhibition of the growth response caused by 0.05 g GA3 did not affect endogenous growth.Only very small amounts of inhibitory activity from carob extract were transferred from water to chloroform at a pH (2.0) at which most of the ABA was transferred.  相似文献   

4.
The main objectives of the study were to produce inulinase from carob extract by Aspergillus niger A42 (ATCC 204447) and to model the inulinase fermentation in the optimum carob extract-based medium. In the study, carob extract was used as a novel and renewable carbon source in the production of A. niger inulinase. For medium optimization, eight different variables including initial sugar concentration (°Bx), (NH4)2HPO4, MgSO4.7H2O, KH2PO4, NH4NO3, yeast extract, peptone, and ZnSO4.7H2O were employed. After fermentations, optimum medium composition contained 1% yeast extract in 5°Bx carob extract. As a result of the fermentation, the maximum inulinase activity, maximum invertase-type activity, I/S ratio, maximum inulinase- and invertase-type activity rates, maximum sugar consumption rate, and sugar utilization yield were 1507.03 U/ml, 1552.86 U/ml, 0.97, 175.82 and 323.76 U/ml/day, 13.26 g/L/day, and 98.52%, respectively. Regarding mathematical modeling, the actual inulinase production and sugar consumption data were successfully predicted by Baranyi and Cone models based on the model evaluation and validation results and the predicted kinetic values, respectively. Consequently, this was the first report in which carob extract was used in the production of inulinase as a carbon source. Additionally, the best-selected models can serve as universal equations in modeling the inulinase production and sugar consumption in shake flask fermentation with carob extract medium.  相似文献   

5.
The production of ethanol from carob pods by Saccharomyces cerevisiae in solid-state fermentation was investigated. The maximal ethanol concentration (160±3 g/kg dry pods), ethanol productivity (6.7 ± 0.2 g/kg per hour), ethanol yield (40 ± 1.8%), biomass concentration (7.5 ± 0.4 x 108 cells/g carob pulp) and fermentation efficiency (80 ± 2%) were obtained at an inoculum amount of 3%, a particle size of 0.5 mm, a moisture level of 70%, a pH of 4.5 and a temperature of 30°C. Under the same fermentation conditions both sterilized and non-sterilized carob pods pulp gave the same maximum ethanol concentration.  相似文献   

6.
The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45–50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90–95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47–0.50 g/g), and a final ethanol concentration of 100–110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.  相似文献   

7.
In this research, ethanol production from carob pod extract (extract) using Zymomonas mobilis with medium optimized by Plackett–Burman (P–B) and response surface methodologies (RSM) was studied. Z. mobilis was recognized as useful for ethanol production from carob pod extract. The effects of initial concentrations of sugar, peptone, and yeast extract as well as agitation rate (rpm), pH, and culture time in nonhydrolyzed carob pod extract were investigated. Significantly affecting variables (P = 0.05) in the model obtained from RSM studies were: weights of bacterial inoculum, initial sugar, peptone, and yeast extract. Acid hydrolysis was useful to complete conversion of sugars to glucose and fructose. Nonhydrolyzed extract showed higher ethanol yield and residual sugar compared with hydrolyzed extract. Ethanol produced (g g−1 initial sugar, as the response) was not significantly different (P = 0.05) when Z. mobilis performance was compared in hydrolyzed and nonhydrolyzed extract. The maximum ethanol of 0.34 ± 0.02 g g−1 initial sugar was obtained at 30°C, initial pH 5.2, and 80 rpm, using concentrations (g per 50 mL culture media) of: inoculum bacterial dry weight, 0.017; initial sugar, 5.78; peptone, 0.43; yeast extract, 0.43; and culture time of 36 h.  相似文献   

8.
Chopped carob pods were autoclaved in an ammonium salt solution. The solution was absorbed by the pods during autoclaving. The material was inoculated with either Rhizopus oligosporus or Monascus ruber and incubated for 3 d at 30 °C. The growing mycelium penetrated the particles to form a cake-like structure containing ca. 7% protein. The fermentation product contained 73–83% of the original carob sugars, whereas the amount of tannins was considerably lower than in the pods.  相似文献   

9.
Protoplast isolation from endosperms of developing carob (Ceratonia siliqua L.) seeds is reported for the first time. These protoplasts regenerated cell walls within 12 h. In order to assess their potential for galactomannan biosynthesis, the incorporation of radioactivity in the regenerated cell wall polysaccharides (CWP) and extracellular polysaccharides (ECP), after feeding these protoplasts with D-[U-14C]glucose or D-[U-14C]mannose was studied. The pattern of the radioactive label distribution in the neutral sugars of the trifluoroacetic acid (TFA) hydrolysate of CWP was different from that of the ECP. In the TFA hydrolysis products of the CWP, immediately after protoplast isolation, the greatest level of radioactivity (approximately 90%) was detected in glucose, galactose and mannose. After 2 days protoplast culture, the label in mannose increased. In contrast, immediately after protoplast isolation, approximately 90% of radioactivity of the ECP was detected in galactose and mannose. However, during culture, the radioactivity incorporation in mannose dropped to one third, while that in galactose and arabinose increased significantly. Hydrolysis of the CWP and ECP with -galactosidase and endo--mannanase confirmed that, at least part of mannose and galactose belonged to galactomannan molecules. These results were compared with those obtained upon feeding developing endosperm tissue with D-[U-14C]mannose. From our results we concluded that protoplasts from endosperm tissues of developing carob seeds, retained the ability of their original explant to synthesize galactomannan, making protoplasts candidates for the study of galactomannan biosynthesis.  相似文献   

10.
In this work, carob pulp syrup was used as carbon source in C. cohnii fermentations for docosahexaenoic acid production. In preliminary experiments different carob pulp dilutions supplemented with sea salt were tested. The highest biomass productivity (4 mg/lh) and specific growth rate (0.04/h) were observed at the highest carob pulp dilution (1:10.5 (v/v), corresponding to 8.8 g/l glucose). Ammonium chloride and yeast extract were tested as nitrogen sources using different carob pulp syrup dilutions, supplemented with sea salt as growth medium. The best results were observed for yeast extract as nitrogen source. A C. cohnii fed-batch fermentation was carried out using diluted carob pulp syrup (1:10.5 v/v) supplemented with yeast extract and sea salt. The biomass productivity was 420 mg/lh, and the specific growth rate 0.05/h. Under these conditions the DHA concentration and DHA production volumetric rate attained 1.9 g/l and 18.5 mg/lh respectively after 100.4 h. The easy, clean and safe handling of carob pulp syrup makes this feedstock a promising carbon source for large-scale DHA production from C. cohnii. In this way, this carob industry by-product could be usefully disposed of through microbial production of a high value fermentation product.  相似文献   

11.
Summary The presence of abscisic acid in the inhibitors B1 and C from immature carob fruit, whole and minus seed, has been established by thin-layer and gas chromatography and by combined gas chromatography-mass spectrometry. Abscisic acid has been identified in commercial carob syrup by the same means. Most, if not all, of the growth inhibitory activity in these fractions is accounted for as abscisic acid by quantitative gas chromatography as the methyl ester. Trimethylsilylation of abscisic acid with bis (trimethylsilyl) acetamide in pyridine gives two isomeric tris(trimethylsilyl) derivatives.  相似文献   

12.
Two strains ofAspergillus niger were cultured in solid-state fermentation system on carob pods ground from 1.25 to 8 mm diam. A particle size of 2.5 mm gave the highest protein content of the final product (20%, w/w) and 52% of the total soluble carbohydrates were utilized. The total tannin concentration of the carob pods decreased by 83% in 4 days of fermentation.T. Smail and O. Salhi are with the Laboratory of Microbiology, U.R.B.A.F., Institute of Biology, Tizi-Ouzou University, Algeria. J.S. Knapp is with the Department of Microbiology, The University of Leeds, Leeds LS2 9JT, UK;  相似文献   

13.
The seeds of various plants were used as weights because their mass reputedly varies so little. Carob (Ceratonia siliqua), which has given its name to the carat, is particularly famous in this regard. But are carob seeds unusually constant in weight and, if not, how did the myth arise? The variability of seeds sampled from a collection of carob trees (CV=23%) was close to the average of 63 species reviewed from the literature (CV=25%). However, in a perception experiment observers could discriminate differences in carob seed weight of around 5% by eye demonstrating the potential for humans to greatly reduce natural variation. Interestingly, the variability of pre-metrication carat weight standards is also around 5% suggesting that human rather than natural selection gave rise to the carob myth.  相似文献   

14.
Bioethanol production from carob pods has attracted many researchers due to its high sugar content. Both Zymomonas mobilis and Saccharomyces cerevisiae have been used previously for this purpose in submerged and solid-state fermentation. Since extraction of sugars from the carob pod particles is a costly process, solid-state and solid submerged fermentations, which do not require the sugar extraction step, may be economical processes for bioethanol production. The aim of this study is to evaluate the bioethanol production in solid submerged fermentation from carob pods. The maximum ethanol production of 0.42 g g?1 initial sugar was obtained for Z. mobilis at 30°C, initial pH 5.3, and inoculum size of 5% v/v, 9 g carob powder per 50 mL of culture media, agitation rate 0 rpm, and fermentation time of 40 hr. The maximum ethanol production for S. cerevisiae was 0.40 g g?1 initial sugar under the same condition. The results obtained in this research are comparable to those of Z. mobilis and S. cerevisiae performance in other culture mediums from various agricultural sources. Accordingly, solid submerged fermentation has a potential to be an economical process for bioethanol production from carob pods.  相似文献   

15.
S. Gothilf 《BioControl》1969,14(2):195-202
The presence of natural enemies of the carob moth was investigated on carob trees, acacias and citrus trees in the various regions of Israel. The highest number of parasite species was found on carob trees, while only a few were observed on acacias and a single one on citrus. A list is given of the natural enemies of the carob moth.  相似文献   

16.
Fusarium moniliforme was cultured semicontinuously on a carob medium in a 14-liter fermentor (8.5-liter working volume). The growth medium provided 2.4% carob sugar, 0.72% NH4H2PO4, and 0.03% MgSO4-7H2O. The biomass harvest was 8.8 g/liter per day. Ninety percent of the sugars were consumed, and the pH dropped from 5.9 to about 3.7. The crude protein (N X 6.25) of the spray-dried mycelium was 380 g/kg, 300 g/kg for the true protein (Lowry), and 4.8 g/kg for the (Folin-Denis) tannic acid. The mycelium was evaluated nutritionally with the weanling rat as experimental animal. The protein efficiency ratio and net protein utilization values for the unsupplemented mycelium were 1.15 and 0.42, respectively, and for the mycelium supplemented with DL-methionine (5 g/kg) they were 2.31 and 0.72, respectively. No growth depression was observed in the experimental rats, and on dissection of the carcasses the internal organs were found to be normal.  相似文献   

17.
Fusarium moniliforme was cultured semicontinuously on a carob medium in a 14-liter fermentor (8.5-liter working volume). The growth medium provided 2.4% carob sugar, 0.72% NH4H2PO4, and 0.03% MgSO4-7H2O. The biomass harvest was 8.8 g/liter per day. Ninety percent of the sugars were consumed, and the pH dropped from 5.9 to about 3.7. The crude protein (N X 6.25) of the spray-dried mycelium was 380 g/kg, 300 g/kg for the true protein (Lowry), and 4.8 g/kg for the (Folin-Denis) tannic acid. The mycelium was evaluated nutritionally with the weanling rat as experimental animal. The protein efficiency ratio and net protein utilization values for the unsupplemented mycelium were 1.15 and 0.42, respectively, and for the mycelium supplemented with DL-methionine (5 g/kg) they were 2.31 and 0.72, respectively. No growth depression was observed in the experimental rats, and on dissection of the carcasses the internal organs were found to be normal.  相似文献   

18.
Viable protoplasts were isolated for the first time from maturecarob (Ceratonia siliqua L.) endosperm tissue. After 5 d ofincubation 75% of the protoplasts were viable. During incubationthey underwent vacuolation and produced the carob endospermhydrolases, agalactosidase and endo-ß-mannanase, whichwere secreted in the incubation medium. The secretion of bothenzymes were under Ca2+ control. Many characteristics of -galactosidaseand endo-ß-mannanase production by protoplasts werethe same as those of whole endosperms: their production didnot require any hormonal signal and was inhibited in the presenceof ABA or the leachate from the carob endosperm/seed coat. Moderatewater stress (—2.0 MPa) neither affected the activityof these hydrolases nor their secretion by endosperm protoplast.However, when the osmoticum of protoplast incubation mediumwas higher, the production and secretion of both hydrolaseswere reduced. Comparison of the hydrolases activities in theincubation media of leached carob endosperms, which were incubatedunder normal and water stress (—1.5 MPa) conditions, withthe activities of the protoplast-secreted hydrolases indicatedthat (i) carob endosperm cell wall acts as a barrier for thesecreted enzymes and (ii) that water stress reduces the cellwall porosity of the carob endosperm cells, and thus the releaseof the secreted -galactosidase and endo-ß-mannanaseis inhibited. The isolation of carob endosperm protoplasts offersa potent experimental system for the study of aspects of endospermcell physiology, such as enzyme secretion Key words: Abscisic acid, carob endosperm, Ceratonia siliqua L, endo-ß-mannanase, -galactosidase, leachate, protoplasts, water stress  相似文献   

19.
Nitrogen assimilation and transport in carob plants   总被引:1,自引:0,他引:1  
Most of the nitrate reductase activity (80%;) in carob ( Ceratonia siliqua L. cv. Mulata) is localised in the roots. The nitrate concentration in the leaves is relatively low compared to that in the roots, suggesting that nitrate influx into the leaf may be a major factor limiting the levels of nitrate reductase in the shoot. Transport of nitrate from root to shoot appears limited by the entrance of nitrate into the xylem. In order to study this problem, we determined the nitrate concentrations and nitrate reductase activities along the roots of nitrate-grown plants, as well as the composition of the xylem sap and the nitrate levels in the leaves. Some of the the bypocotyl, in order to bypass the loading of nitrate into the xylem of the roots. The results show that the loading of nitrate into the xylem is a limiting step.
The cation and anion concentrations of nitrate- and ammonium-fed plants were similar, showing almost no production of organic anions. In both nitrate- and ammonium-fed plants, the transport of nitrogen from root to shoot was in the form of organic nitrogen compounds. The nitrate reductase activity in the roots was more than sufficient to explain all the efflux of OH into the root medium of nitrate-fed plants. In carob plants the K-shuttle may thus be operative to a limited extent only, corresponding to between 11 and 27%; of the nitrate taken up. Potassium seems to be the cation accompanying stored nitrate in the roots of carob seedlings, since they accumulate nearly stoichiometric amounts of K+ and NO3.  相似文献   

20.
Fusarium moniliforme was grown on a carob aqueous extract in a chemostat for fungal protein production. The substrate was adjusted to provide 0.5% carob sugars supplemented with inorganic salts. The dilution rate varied from 0.086 to 0.227 hr?1 under constant conditions of temperature (30°C), pH (4.5), and oxygen saturation (60–80%). A yield of 0.709 g dry mycelium/g consumed carob sugar and a productivity value of 0.687 g dry mycelium/liter hr?1 were obtained at μ = 0.205 hr?1. The maintenance coefficient was 0.077 g carob sugar/g dry mycelium hr?1. While the carbohydrate and purine content of dry mycelium increased at μ values from 0.114 to 0.205 hr?1 both true (Lowry) and crude (N × 6.25) protein contents decreased at the same μ range. Maximum values of 36.3% true and 47.9% crude protein of dry mycelium were obtained at μ = 0.114 hr?1, whereas a minimum purine content of 99.8 μmol/g corresponding to 6.42% nucleic acids was recorded at μ = 0.086 hr?1. It was concluded that a continuous fermentation of carob aqueous extract using F. moniliforme should be operated at growth rates of approximately 0.205 hr?1 in order to maximize protein production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号