首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the mammalian cochlea, tight junctional strands are visible on freeze fracture images of marginal cells and other inner ear epithelia. The molecular composition of the strial tight junctions is, however, largely unknown. We investigated the expression of integral tight junction-proteins, claudin-1 to -4, and occludin, in stria vascularis of the guinea-pig cochlea, as compared to kidney. Western blot analysis revealed a strong expression of claudin-4 and occludin in strial tissue, and confocal immunofluorescence microscopy demonstrated their presence in the tight junctions of the marginal cells. In addition, a moderate level of claudin-3 and claudin-1 was detected and both were located in the marginal tight junctions. Claudins-1, -3, and -4 are characteristic of epithelia with low paracellular permeability and claudin-4 is known to restrict the passage of cations through epithelial tight junctions. In the marginal cells, these claudins appear to be responsible for the separation of the potassium-rich endolymph from the sodium-rich intrastrial fluid. In contrast, Western blot analysis and confocal microscopy demonstrated that the marginal cell epithelium does not contain claudin-2, which forms a cation-selective pore in tight junctions. Its absence indicates a cation-tight paracellular pathway in the marginal cells.  相似文献   

2.
Multiple proteoglycans (PGs) are present in all basement membranes (BM) and may contribute to their structure and function, but their effects on cell behavior are not well understood. Their postulated functions include: a structural role in maintaining tissue histoarchitecture, or aid in selective filtration processes; sequestration of growth factors; and regulation of cellular differentiation. Furthermore, expression PGs has been found to vary in several disease states. In order to elucidate the role of PGs in the BM, a well-characterized model of polarized epithelium, Madin-Darby canine kidney (MDCK) cells has been utilized. Proteoglycans were prepared from conditioned medium by DEAE anion exchange chromatography. The eluted PGs were treated with heparitinase or chondroitinase ABC (cABC), separately or combined, followed by SDS-PAGE. Western blot analysis, using antibodies specific for various PG core proteins or CS stubs generated by cABC treatment, revealed that both basement membrane and interstitial PGs are secreted by MDCK cells. HSPGs expressed by MDCK cells are perlecan, agrin, and collagen XVIII. Various CSPG core proteins are made by MDCK cells and have been identified as biglycan, bamacan, and versican (PG-M). These PGs are also associated with mammalian kidney tubules in vivo.  相似文献   

3.
The cell-to-cell junction of endothelial cells (ECs) regulates the fence function of the vascular system. Previously we showed that ECs derived from embryonic stem cells (i.e., EECs) develop to form stable endothelial sheets in monolayer cultures. Immunohistochemical analysis revealed that these EECs formed intercellular junctions with the help of vascular endothelial cadherin (VECD) and claudin-5. In this study, we investigated the response of EC sheets to stimuli that are known to increase vascular permeability. While vascular endothelial growth factor A and histamine disrupted the EC junction by enhancing contraction of EECs, thrombin affected specifically the localization of claudin-5 at this junction. We could not detect any significant effect of thrombin on the localization of VECD. Concerning thrombin receptors, EECs expressed protease-activated receptor 1 (PAR1) but not PAR4. Consistent with this expression pattern, PAR1 agonists eliminated claudin-5 as effectively as thrombin itself. This is the first report to show that claudin-5 can be disassembled from the EC junction in a signal-dependent manner and to suggest that claudin-5 mobilization is a cause of PAR1-induced increase in vascular permeability.  相似文献   

4.
5.
In salivary glands, primary saliva is produced by acini and is modified by the reabsorption and secretion of ions in the ducts. Thus, the permeability of intercellular junctions in the ducts is considered to be lower than in the acini. We have examined the relationship between the expressed claudin isotypes and the barrier functions of tight junctions in a submandibular gland epithelial cell line, SMIE. SMIE cells were originally derived from rat submandibular duct cells, but their barrier functions are not as efficient as those of Madin-Darby canine kidney cells. Large molecules, such as 70-kDa dextran, diffuse across the monolayers, although E-cadherin and occludin, adherens junction and tight junction proteins, respectively, are expressed in SMIE cells. Claudin-3 protein has also been detected, but the expression level of claudin-3 mRNA is much lower than in the original submandibular glands. Other claudins including claudin-4 (originally expressed in the duct cells) have not been detected. Because of the limited expression of claudins, SMIE cells are suitable for studying the role(s) of claudins. To examine the function of claudin-4 in submandibular glands, we have overexpressed green fluorescence protein (GFP)-fused claudin-4 in SMIE cells. Cells that express GFP-fused claudin-4 have a higher transepithelial electrical resistance and a lower permeability of 70-kDa dextran, although the expression levels of occludin and claudin-3 are hardly affected. Therefore, claudin-4 plays a role in the regulation of the barrier function of tight junctions in submandibular glands. This work was supported by Grants-in-Aid for scientific research from the Ministry of Education, Science, Culture, Sports, and Technology of Japan (16591868), by a Nihon University Multidisciplinary Research Grant for 2006 and 2007, and by a Grant-in-Aid for a 2003 Multidisciplinary Research Project from MEXT.  相似文献   

6.
7.
Protein delivery across polarized epithelia is controlled by receptor‐mediated transcytosis. Many studies have examined basolateral‐to‐apical trafficking of polymeric IgA (pIgA) by the polymeric immunoglobulin receptor (pIgR). Less is known about apical‐to‐basolateral transcytosis, the direction the neonatal Fc receptor (FcRn) transports maternal IgGs across intestinal epithelia. To compare apical‐to‐basolateral and basolateral‐to‐apical transcytosis, we co‐expressed FcRn and pIgR in Madin‐Darby canine kidney (MDCK) cells and used pulse‐chase experiments with confocal microscopy to examine transport of apically applied IgG Fcγ and basolaterally applied pIgA. Fcγ and pIgA trafficking routes were initially separate but intermixed at later chase times. Fcγ was first localized near the apical surface, but became more equally distributed across the cell, consistent with concomitant transcytosis and recycling. By contrast, pIgA transport was strongly unidirectional: pIgA shifted from near the basolateral surface to an apical location with increasing time. Some Fcγ and pIgA fluorescence colocalized in early (EEA1‐positive), recycling (Rab11a‐positive), and transferrin (Tf)‐positive common/basolateral recycling endosomes. Fcγ became more enriched in Tf‐positive endosomes with time, whereas pIgA was sorted from these compartments. Live‐cell imaging revealed that vesicles containing Fcγ or pIgA shared similar mobility characteristics and were equivalently affected by depolymerizing microtubules, indicating that both trafficking routes depended to roughly the same extent on intact microtubules.  相似文献   

8.
Splenic sinus endothelial cells, which adhere through tight and adherens junctions, regulate the passage of blood cells through the splenic cord. The objective of this study was to assess the localization of tight junctional proteins, claudin-5 and ZO-1 in the sinus endothelial cells of rat spleen and to characterize spatial and functional relationships between tight and adherens junctions. Immunofluorescence microscopy of tissue cryosections demonstrated that claudin-5, ZO-1, and α-catenin were distinctly localized in the junctional regions of adjacent endothelial cells. Immunogold electron microscopy demonstrated claudin-5 localized in the tight-junctional fused membranes of adjacent endothelial cells. Immunogold labeling for ZO-1 was localized not only in the tight-junctional-fused membranes of endothelial cells but also in the junctional membrane. α-Catenin was intermittently localized along the juxtaposed junctional membranes of adjacent endothelial cells. Double-staining immunogold microscopy for claudin-5 and ZO-1, claudin-5 and VE-cadherin, ZO-1 and VE-cadherin, and ZO-1 and α-catenin demonstrated that ZO-1 was closely localized to VE-cadherin and α-catenin in their juxtaposed membranes of endothelial cells. Thus, ZO-1 might play an important role in regulating the cell–cell junctions of sinus endothelial cells for blood–cell passage through splenic cords. This work was supported by a Grant-in-Aid for Scientific Research (C), Japan.  相似文献   

9.
Haematogenous spread is a key step in the development of Acanthamoeba granulomatous encephalitis, however it is not clear how circulating amoebae cross the blood–brain barrier to enter the CNS to produce disease. Using the primary human brain microvascular endothelial cells (HBMEC), which constitute the blood–brain barrier, here it is shown that Acanthamoeba abolishes the HBMEC transendothelial electrical resistance. Using traversal assays, it was observed that Acanthamoeba crosses the HBMEC monolayers. The primary interactions of Acanthamoeba with the HBMEC resulted in increased protein tyrosine phosphorylations and the activation of RhoA, suggesting host–parasite cross-talk. Furthermore, Western blot assays revealed that Acanthamoeba degraded occludin and zonula occludens-1 proteins in a Rho kinase-dependent manner. Overall, these findings suggest that Acanthamoeba affects the integrity of the monolayer and traverses the HBMEC by targeting the tight junction proteins.  相似文献   

10.
The reduced-folate carrier (Rfc-1), previously also called methotrexate carrier-1 (MTX-1), was recently identified as accounting for approximately 30% of the methotrexate (Mtx) uptake into rat kidney slices. The localization of the carrier and its contribution to secretory or reabsorptive flux of the drug was therefore evaluated in polarized epithelial layers of Madin Darby canine kidney (MDCK) cells. Confocal laser scanning microscopy revealed that the HA-epitope-tagged protein was sorted to the basolateral side. In flux assays, the basolateral-to-apical transport of fluoresceinated methotrexate (FMTX) was two-fold higher than in the apical-to-basolateral direction across rat Rfc-1 transfected, but not mock-transfected, monolayers. The same observation was made for unlabeled Mtx. This secretory transport of FMTX was inhibited by an excess of 1 mM Mtx and was saturable and temperature-dependent. No differences in directional flux were observed for the pure fluorescein label. Removal of sodium resulted in a marked decrease of directional FMTX flux. The pH profile of the active transport component showed a trough around 6.5 and a maximum at acidic pH, as reported for uptake into Rfc-1-expressing cells. Thus, rat Rfc-1 is sorted to the basolateral side in polarized MDCK epithelial cells and mediates the secretion of Mtx, probably in co-operation with efflux proteins, such as multidrug resistance associated proteins, which are also expressed in these cells. This study was supported by the Deutsche Forschungsgemeinschaft (HO2103/1-2) and HO2512/1-1 (Kerstin U. Honscha).  相似文献   

11.
There are two strains of MDCK cells, MDCK I and II. MDCK I cells show much higher transepithelial electric resistance (TER) than MDCK II cells, although they bear similar numbers of tight junction (TJ) strands. We examined the expression pattern of claudins, the major components of TJ strands, in these cells: claudin-1 and -4 were expressed both in MDCK I and II cells, whereas the expression of claudin-2 was restricted to MDCK II cells. The dog claudin-2 cDNA was then introduced into MDCK I cells to mimic the claudin expression pattern of MDCK II cells. Interestingly, the TER values of MDCK I clones stably expressing claudin-2 (dCL2-MDCK I) fell to the levels of MDCK II cells (>20-fold decrease). In contrast, when dog claudin-3 was introduced into MDCK I cells, no change was detected in their TER. Similar results were obtained in mouse epithelial cells, Eph4. Morphometric analyses identified no significant differences in the density of TJs or in the number of TJ strands between dCL2-MDCK I and control MDCK I cells. These findings indicated that the addition of claudin-2 markedly decreased the tightness of individual claudin-1/4-based TJ strands, leading to the speculation that the combination and mixing ratios of claudin species determine the barrier properties of individual TJ strands.  相似文献   

12.
Gap junctions are considered to play a crucial role in differentiation of epithelial cells and to be associated with tight junction proteins. In this study, to investigate the role of gap junctions in regulation of the barrier function and fence function on the tight junctions, we introduced the Cx26 gene into human airway epithelial cell line Clau-3 and used a disruption model of tight junctions employing the Na(+)/K(+)-ATPase inhibitor ouabain. In parental Calu-3 cells, gap junction proteins Cx32 and Cx43, but not Cx26, and tight junction proteins occludin, JAM-1, ZO-1, claudin-1, -2, -3, -4, -5, -6, -7, -8, -9, and -14 were detected by RT-PCR. The barrier function and fence function of tight junctions were well maintained, whereas the GJIC was low level. Treatment with ouabain caused disruption of the barrier function and fence function of tight junctions together with down-regulation of occludin, JAM-1, claudin-2, and -4 and up-regulation of ZO-1 and claudin-14. In Cx26 transfectants, Cx26 protein was detected by Western blotting and immunocytochemistry, and many gap junction plaques were observed with well-developed tight junction strands. Expression of claudin-14 was significantly increased in Cx26 transfectants compared to parental cells, and in some cells, Cx26 was co-localized with claudin-14. Interestingly, transfection with Cx26 prevented disruption of both functions of tight junctions by treatment with ouabain without changes in the tight junction proteins. Pretreatment with the GJIC blockers 18beta-glycyrrhetinic acid and oleamide did not affect the changes induced by Cx26 transfection. These results suggest that Cx26 expression, but not the mediated intercellular communication, may regulate tight junction barrier and fence functions in human airway epithelial cell line Calu-3.  相似文献   

13.
To investigate the effects of all-trans retinoic acid (atRA) on the barrier function in human retinal pigment epithelial cells, ARPE-19 cells were cultured on the filters as monolayer with atRA being added in the apical side. The change of epithelial permeability was observed from the measurement of transepithelial electrical resistance (TER), permeability assay, and Western Blot analysis. We discovered that atRA promoted the epithelial barrier function in vitro, and its bioavailability regulates the epithelial barrier, which is accompanied by altering expression of tight junctions (TJ)-associated proteins. Our study indicates that atRA provides barrier-positive elements to the RPE cell.  相似文献   

14.
We investigate the influence of the dimensionality and the biochemistry of the culture system on the cellular functionality by analyzing the protein expression levels in Madin–Darby canine kidney (MDCK) cells grown in 3‐D and 2‐D substrates. We cultured MDCK cells on a hard and flat 2‐D uncoated plastic surface, on a 2‐D collagen‐coated plastic surface and in 3‐D collagen gel and employed 2‐D gel electrophoresis, MALDI‐TOF‐MS, and LC‐MS/MS analysis to identify the differentially regulated proteins. We found significant differences in the expression of antioxidant proteins, actin‐binding proteins, glycolytic enzymes, and heat‐shock proteins/chaperons among the three types of cultures. While MDCK cells cultured in 3‐D collagen up‐regulate antioxidant proteins and proteins involved in the dynamic remodeling of the actin cytoskeleton, 2‐D collagen‐coated plastic surfaces induce the up‐regulation of glycolytic enzymes. Our data shows that the culture conditions have profound effects on the physiology of the cell. Culture in 3‐D collagen induces a differentiated polarized phenotype. In contrast, collagen‐coated 2‐D substrates favor a tumor‐like phenotype with increased glycolysis. Thus, the suitability of 2‐D cultures to study the physiological behavior of cells, especially in drug discovery, bioprocessing, and toxicology, should be carefully reconsidered.  相似文献   

15.
The gastrointestinal epithelium, which is covered by a single layer of epithelial cells, including enterocytes, intraepithelial lymphocytes, goblet cells, microfold cells, and dendritic cells, serves as a protective barrier separating luminal contents from the underlying tissue compartments. The epithelium plays an important role in the first line of host defense against a variety of pathogens, as well as maintaining the homeostasis in gastrointestinal tract. All these epithelial cells express junction complex proteins and form cell junctions such as adherens and TJs, although the TJs have small differences among different epithelial cells. The TJs, located most apically on the lateral membrane, are required for the proper formation of epithelial cell polarity as well as sustaining of the mucosal barrier. Furthermore, TJs are the key cell junctions modulating the paracellular pathway. Understanding the diversity of the TJs between intestinal epithelial cells and their different roles in defending pathogens' invasion and modifying the paracellular pathway are attractive to exploration.  相似文献   

16.
Glycosylation of mucins produced by human intestinal goblet cells plays a crucial role in their functions: mucus gel physico-chemical protective properties, host-bacteria interactions, cell-cell adhesion, cell migration, and cell signaling. Colonic mucin glycosylation can be modified by luminal metabolites of fiber fermentation like butyrate. Our aim was to assess the effect of butyrate on the expression of a large panel of glycosylation-related genes in human intestinal epithelial goblet cells HT29-Cl.16E. We found that only a very scarce group of genes: 9 out of 252 were evidenced by microarray screening, and only three had their modulation significantly confirmed by real time PCR quantification. The most striking effect of butyrate was its 8- to 18-fold increase of galectin-1 gene expression, which was confirmed at the protein level, specifically with a central and apical intracellular localization. Significant butyrate effects will be discussed in regard to their possible link with mucins expressed by HT29-Cl.16E cells.  相似文献   

17.
Cyclic AMP (cAMP) promotes functions of tight junctions in endothelial cells, although its target remains unknown. We showed here that cAMP increased gene expression of claudin-5 and decreased that of claudin-1 in porcine blood-brain-barrier endothelial cells via protein kinase A (PKA)-independent and -dependent pathways, respectively. cAMP also enhanced immunoreactivity of claudin-5 along cell borders and in the cytoplasm, reorganized actin filaments, and altered signals of claudin-5, occludin, ZO-1, and ZO-2 along cell boundaries from zipperlike to linear patterns. In contrast, claudin-1 was detected only in the cytoplasm in a dotlike pattern, and its immunolabeling was reduced by cAMP. Interestingly, 31- and 62-kDa claudin-5 immunoprecipitates in the NP-40-soluble and -insoluble fractions, respectively, were highly phosphorylated on threonine residue(s) upon cAMP treatment. All these changes induced by cAMP, except for claudin-5 expression and its signals in the cytoplasm, were reversed by an inhibitor of PKA, H-89. We also demonstrated that cAMP elevated the barrier function of tight junctions in porcine blood-brain-barrier endothelial cells in PKA-dependent and -independent manners. These findings indicate that both PKA-induced phosphorylation of claudin-5 immunoprecipitates and cAMP-dependent but PKA-independent induction of claudin-5 expression could be involved in promotion of tight-junction function in endothelial cells.  相似文献   

18.
The endothelial lining and its outer lipid membrane are the first major barriers drug molecules encounter upon intravenous administration. Our previous work identified lipid analogs that counteract plasma membrane barrier function for a series of amphiphilic drugs. For example, short-chain sphingolipids (SCS), like N-octanoyl-glucosylceramide, effectively elevated doxorubicin accumulation in tumor cells, both in vitro and in vivo, and in endothelial cells, whereas other (normal) cells remained unaffected. We hypothesize here that local membrane lipid composition and the degree of lipid ordering define SCS efficacy in individual cells. To this end, we study the differential effect of SCS on bovine aortic endothelial cells (BAEC) in its confluent versus proliferative state, as a model system. While their (plasma membrane) lipidome stays remarkably unaltered when BAECs reach confluency, their lipids segregate to form apical and basolateral domains. Using probe NR12S, we reveal that lipids in the apical membrane are more condensed/liquid-ordered. SCS preferentially attenuate the barrier posed by these condensed membranes and facilitate doxorubicin influx in these particular membrane regions. We confirm these findings in MDCK cells and artificial membranes. In conclusion, SCS-facilitated drug traversal acts on condensed membrane domains, elicited by confluency in resting endothelium.  相似文献   

19.
Zonula Occludens (ZO) proteins are ubiquitous scaffolding proteins providing the structural basis for the assembly of multiprotein complexes at the cytoplasmic surface of the plasma membrane and linking transmembrane proteins to the filamentous cytoskeleton. They belong to the large family of membrane-associated guanylate kinase (MAGUK)-like proteins comprising a number of subfamilies based on domain content and sequence similarity. ZO proteins were originally described to localize specifically to tight junctions, or Zonulae Occludentes, but this notion was rapidly reconsidered since ZO proteins were found to associate with adherens junctions as well as with gap junctions, particularly with connexin-made intercellular channels, and also with a few other membrane channels. Accumulating evidence reveals that in addition to having passive scaffolding functions in organizing gap junction complexes, including connexins and cytoskeletals, ZO proteins (particularly ZO-1) also actively take part in the dynamic function as well as in the remodeling of junctional complexes in a number of cellular systems. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号