首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the effect of maternal exercise on fetal liver glycogen content, fed and fasted rats that were pregnant for 20.5 or 21.5 days were run on a rodent treadmill for 60 min at 12 m/min with a 0% grade or 16 m/min up a 10% grade. The rats were anesthetized by intravenous injection of pentobarbital sodium, and fetal and maternal liver and plasma samples were collected and frozen. Fetal liver glycogenolysis did not occur as a result of maternal exercise. Fetal blood levels of lactate increased 22-60%, but glucose, plasma glucagon, and insulin were unchanged during maternal exercise. Maternal liver glycogen decreased as a result of exercise in all groups of rats except the fasted 20.5-day-pregnant group. Plasma free fatty acids increased in all groups and blood lactate increased in fed (20.5 days) and fasted (21.5 days) pregnant rats. Maternal glucose, glucagon, and insulin values remained constant during exercise. The fetus appears to be well-protected from metabolic stress during moderate-intensity maternal exercise.  相似文献   

2.
The effect of physiological concentrations of glucagon and insulin on glycogenolysis was studied in the presence and absence of substrates in isolated hepatocytes containing high glycogen. In the absence of substrates glucagon stimulated glycogenolysis at 10?14M concentration, and addition of 100 μunits of insulin partially inhibited glucagon stimulated glycogenolysis (10?14M to 10?11M). However, in the presence of substrates, insulin completely inhibited glucagon stimulated glycogenolysis (10?14M to 10?11M), indicating that molar glucagon and insulin ratios control carbohydrate metabolism in liver. Additional studies showed incorporation of amino acid into protein was linear for only 3 to 4 hr in cells containing low glycogen, whereas in cells containing high glycogen, incorporation was linear for 8 to 10 hr.  相似文献   

3.
The action of orally administered dexamethasone (0.2 mg kg−1 day−1) on metabolic parameters of adjuvant-induced arthritic rats was investigated. The body weight gain and the progression of the disease were also monitored. Dexamethasone was very effective in suppressing the Freund’s adjuvant-induced paw edema and the appearance of secondary lesions. In contrast, the body weight loss of dexamethasone-treated arthritic rats was more accentuated than that of untreated arthritic or normal rats treated with dexamethasone, indicating additive harmful effects. The perfused livers from dexamethasone-treated arthritic rats presented high content of glycogen in both fed and fasted conditions, as indicated by the higher rates of glucose release in the absence of exogenous substrate. The metabolization of exogenous l-alanine was increased in livers from dexamethasone-treated arthritic rats in comparison with untreated arthritic rats, but there was a diversion of carbon flux from glucose to l-lactate and pyruvate. Plasmatic levels of insulin and glucose were significantly higher in arthritic rats following dexamethasone administration. Most of these changes were also found in livers from normal rats treated with dexamethasone. The observed changes in l-alanine metabolism and glycogen synthesis indicate that insulin was the dominant hormone in the regulation of the liver glucose metabolism even in the fasting condition. The prevalence of the metabolic effects of dexamethasone over those ones induced by the arthritis disease suggests that dexamethasone administration was able to suppress the mechanisms implicated in the development of the arthritis-induced hepatic metabolic changes. It seems thus plausible to assume that those factors responsible for the inflammatory responses in the paws and for the secondary lesions may be also implicated in the liver metabolic changes, but not in the body weight loss of arthritic rats.  相似文献   

4.
To determine whether feedforward control of liver glycogenolysis during exercise is subject to negative feedback by elevated blood glucose, glucose was infused into exercising rats at a rate that elevated blood glucose greater than 10 mM. Liver glycogen content decreased 22.4 mg/g in saline-infused rats compared with 13.6 mg/g in glucose-infused rats during the first 40 min of treadmill running (21 m/min, 15% grade). Liver adenosine 3',5'-cyclic monophosphate (cAMP) concentration was significantly lower in the glucose-infused rats during the exercise bout. The concentration of hepatic fructose 2,6-bisphosphate remained elevated throughout the exercise bout in glucose-infused rats but decreased markedly in saline-infused rats. Plasma insulin concentration was higher and plasma glucagon concentration lower in glucose-infused rats than in saline-infused rats during exercise. Early in exercise, liver glycogenolysis proceeds in the glucose-infused rats despite the fact that glucose and insulin concentrations are markedly elevated and liver cAMP is unchanged from resting values. These observations suggest the existence of a cAMP-independent feedforward system for activation of liver glycogenolysis that can override classical negative feedback mechanisms during exercise.  相似文献   

5.
Newborn rats were injected immediately after delivery with glucose or glucose plus mannoheptulose, and the time-courses of liver glycogen, plasma glucose, insulin and glucagon concentration were studied. The administration of glucose prevented both liver glycogenolysis and the increase in plasma glucagon concentration which normally occurs immediately after delivery. In addition, the administration of glucose prevented the decrease of plasma glucose and insulin concentration which normally occurs during the first hour of extrauterine life. Supplementation of glucose with mannoheptulose prevented the increase of plasma insulin concentrations caused by the administration of glucose; liver glycogenolysis, however, was not stimulated in these circumstances. The increase in the rate of glycogenolysis caused by the administration of glucagon was prevented in newborn rats previously treated with glucose. These results suggest that glucose exerts an inhibitory effect on the stimulation of neonatal liver glycogenolysis by glucagon.  相似文献   

6.
Infusion of the thromboxane A2 analogue U-46619 into isolated perfused rat livers resulted in dose-dependent increases in glucose output and portal vein pressure, indicative of constriction of the hepatic vasculature. At low concentrations, e.g. less than or equal to 42 ng/ml, glucose output occurred only during agonist infusion; whereas at concentrations greater than or equal to 63 ng/ml, a peak of glucose output also was observed upon termination of agonist infusion coincident with relief of hepatic vasoconstriction. Effluent perfusate lactate/pyruvate and beta-hydroxybutyrate/acetoacetate ratios increased significantly in response to U-46619 infusion. Hepatic oxygen consumption increased at low U-46619 concentrations (less than or equal to 20 ng/ml) and became biphasic with a transient spike of increased consumption followed by a prolonged decrease in consumption at higher concentrations. Increased glucose output in response to 42 ng/ml U-46619 was associated with a rapid activation of glycogen phosphorylase, slight increases in tissue ADP levels, and no increase in cAMP. At 1000 ng/ml, U-46619 activation of glycogen phosphorylase was accompanied by significant increases in tissue levels of AMP and ADP, decreases in ATP, and slight increases in cAMP. In isolated hepatocytes, U-46619 did not stimulate glucose output or activate glycogen phosphorylase. Reducing the perfusate calcium concentration from 1.25 to 0.05 mM resulted in a marked reduction of the glycogenolytic response to U-46619 (42 ng/ml) with no efflux of calcium from the liver. U-46619-induced glucose output and vasoconstriction displayed a similar dose dependence upon the perfusate calcium concentration. Thus, U-46619 exerts a potent agonist effect on glycogenolysis and vasoconstriction in the perfused rat liver. The present findings support the concept that U-46619 stimulates hepatic glycogenolysis indirectly via vasoconstriction-induced hypoxia within the liver.  相似文献   

7.
We have studied the correlation between cAMP-dependent protein kinase activation and rates of glycogenolysis in hepatocytes isolated from fed rats. With doses of 20 μM glucagon, the protein kinase was activated to a -cAMP/+cAMP ratio of 0.8 within 10 min and remained activated for up to 2 hours. A dose-response relationship between protein kinase activation and rates of glycogenolysis can be demonstrated to 0–20 μM glucagon. Glycogenolysis was stimulated greater than 2-fold after 2 hours of incubation with the higher doses of glucagon. Protein kinase activity ratios correlated well with the rates of glycogenolysis as the ratios varied from control levels of about 0.25 to the stimulated values of 0.5–0.6. However, as the ratios increased from 0.6 to 0.8, with higher doses of glucagon, there were no corresponding increases in the rates of glycogenolysis. These data may indicate (1) that activation of all of the protein kinase present in the liver cells is not necessary for maximal stimulation of glycogenolysis, or (2) that a specific protein kinase is involved in the intracellular control of glycogen breakdown in isolated rat hepatocytes.  相似文献   

8.
Rat liver hepatocytes were isolated by collagenase in vitro perfusion technique and effect of insulin on glycogen synthesis and ultra-structure was studied. Addition of insulin stimulated glycogen synthesis and maintained better cellular structure. Synthesis of glycogen was linear in isolated hepatocytes when incubated with various concentrations of glucose (0–800 mg%) reaching initial levels. Concanavaline A inhibited epinephrine stimulated glycogenolysis but had no effect on glucagon stimulated glycogenolysis. These studies indicate that insulin is required for glycogen synthesis and for maintaining hepatocytes ultrastructure. Furthermore, isolated hepatocytes retain various receptors and that different hormones utilize different receptor sites.  相似文献   

9.
We investigated whether glucocorticoids [i.e., corticosterone (Cort) in rats] released during sleep deprivation (SD) affect regional brain glycogen stores in 34-day-old Long-Evans rats. Adrenalectomized (with Cort replacement; Adx+) and intact animals were sleep deprived for 6 h beginning at lights on and then immediately killed by microwave irradiation. Brain and liver glycogen and glucose and plasma glucose levels were measured. After SD in intact animals, glycogen levels decreased in the cerebellum and hippocampus but not in the cortex or brain stem. By contrast, glycogen levels in the cortex of Adx+ rats increased by 43% (P < 0.001) after SD, while other regions were unaffected. Also in Adx+ animals, glucose levels were decreased by an average of 28% throughout the brain after SD. Intact sleep-deprived rats had elevations of circulating Cort, blood, and liver glucose that were absent in intact control and Adx+ animals. Different responses between brain structures after SD may be due to regional variability in metabolic rate or glycogen metabolism. Our findings suggest that the elevated glucocorticoid secretion during SD causes brain glycogenolysis in response to energy demands.  相似文献   

10.
IT is well established that glucagon induces hyperglycaemia in animals and man through its action on liver glycogenolysis1 and gluconeogenesis2. Adrenaline has similar metabolic effects on the liver1,2 and it is often thought that both hormones play a physiological role as glycogenolytic agents in blood glucose homeostasis. Several authors, however, have reported that when adrenaline was infused directly in the portal vein its effects on blood glucose and hepatic glycogenolysis were much less pronounced than when the hormone was administeied into the systemic circulation3–5. Moreover, Sokal et al. demonstrated both in vitro and in vivo that, in contrast to glucagon, doses of adrenaline within the physiological range had only small and transient effects on liver glycogen and Phosphorylase activity6,7. They thus concluded that glucagon is the only agent promoting glycogenolysis in the liver in physiological conditions and suggested that the effect of moderate doses of adrenaline might be indirect, possibly mediated through stimulation of glucagon secretion.  相似文献   

11.
1. A technique for perfusion of the mouse liver has been developed, and aspects of carbohydrate metabolism have been investigated in the perfused liver of normal and genetically obese mice, homozygous for the recessive gene ob. 2. Rates of gluconeogenesis in perfused mouse liver were faster than those reported for slices of mouse liver, particularly from lactate and pyruvate. 3. The rate of glycogen breakdown to glucose, but not to lactate, was faster in liver from fed obese mice. 4. The capacity for glycogen synthesis from glucose was enhanced in liver from 20h-starved obese mice. 5. The capacity for gluconeogenesis from a number of substrates was not significantly altered in livers from fed or starved obese mice when compared with that of lean mice. 6. These results suggest that the liver contributes to the hyperglycaemia of the obese mice by increased glycogenolysis, and that liver glycogen in obese mice is maintained by synthesis from dietary glucose.  相似文献   

12.
The regulatory role of protein kinase C (PKC) in glycogen metabolism in pectin fed rats was investigated. Administration of pectin (5 g/kg body wt/day) from cucumber (Cucumis sativius L.) led to inhibitory effects on PKC activity in the liver of rats. In the brain and pancreas, PKC activity was significantly higher in pectin-treated rats as compared to the control group. Level of blood glucose was significantly lowered and the level of glycogen in the liver was significantly increased in pectin-administered rats. Glycogen synthase activity was enhanced, while glycogen phosphorylase enzyme showed inhibition in pectin-treated rats. Results indicated that pectin administration might have caused an increase in the secretion of the insulin, which, in turn, had a stimulatory effect on the PKC activity in the pancreas. The decreased PKC activity in the liver and increased PKC activity in the brain and pancreas on pectin administration indicated enhanced glycogenesis and reduced glycogenolysis.  相似文献   

13.
1. Rates and rate coefficients of glucose utilization and replacement in post-absorptive rats, either conscious or under halothane anaesthesia, were determined in a thermoneutral environment by using [5-3H]- and [U-14C]glucose. Label was not injected into rats under halothane until about 0.5h after anaesthesia was initiated. 2. Comparison with the results for 24h-starved rats in the preceding paper [Heath et al. (1977) Biochem. J. 162, 643-651] showed that insulin concentrations were considerably higher but rate coefficients for glucose utilization were little altered in post-absorptive rats. Sensitivity to insulin was thus considerably increased by a 24h period of starvation in the rat. 3. Fractional recycling of glucose carbon in post-absorptive rats was under one-half of that in starved rats, reflecting the larger contribution of liver glycogenolysis to glucose production in the former. 4. In post-absorptive rats halothane decreased the mean rate of glucose utilization by about 17%. This decrease was associated with an increase in mean plasma insulin concentration, showing that halothane decreased sensitivity to insulin. 5. Recycling was slightly increased by halothane, indicating that the contribution of liver glycogen to the total glucogenic rate was decreased, probably because liver glycogen concentration were about 40% lower throughout the rate determinations in halothane. 6. Comparison of our results with earlier work shows that during and shortly after induction of halothane anaesthesia glucose turnover must have been greatly increased whereas from about 0.5h after induction it was decreased.  相似文献   

14.
To investigate the alterations of glucose homeostasis and variables of the insulin‐like growth factor‐1 (IGF‐1) growth system in sedentary and trained diabetic (TD) rats, Wistar rats were divided into sedentary control (SC), trained control (TC), sedentary diabetic (SD), and TD groups. Diabetes was induced by Alloxan (35 mg kg?1 b.w.). Training program consisted of swimming 5 days week?1, 1 h day?1, during 8 weeks. Rats were sacrificed and blood was collected for determinations of serum glucose, insulin, growth hormone (GH), IGF‐1, and IGF binding protein‐3 (IGFBP‐3). Muscle and liver were removed to evaluate glycogen content. Cerebellum was extracted to determinate IGF‐1 content. Diabetes decreased serum GH, IGF‐1, IGFBP‐3, liver glycogen, and cerebellum IGF‐1 peptide content in baseline condition. Physical training recovered liver glycogen and increased serum and cerebellum IGF‐1 peptide in diabetic rats. Physical training induces important metabolic and hormonal alterations that are associated with an improvement in glucose homeostasis and serum and cerebellum IGF‐1 concentrations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The loss of glucose regulation of glycogen synthase in perfused livers from diabetic rats was associated with a substantial reduction in synthase phosphatase activity. Treatment of diabetic rats with insulin alone resulted in total restoration of the glucose effect and synthase phosphatase activity, while simultaneous treatment with cycloheximide severely reduced the hormonal effect. Although treatment of normal rats with cycloheximide had no effect on glucose activation of synthase, it did result in severe depletion of liver glycogen increased liver glycogen phosphorylase activity, and elevation of liver adenosine 3′,5′-monosphosphate (cyclic AMP), but without elevation of liver protein kinase activity. Simultaneous treatment of alloxan-diabetic rats with insulin and cycloheximide resulted in reduction of total liver glycogen, increased phosphorylase activity, a reduction in the ability of insulin to lower hepatic cyclic AMP, and a further reduction of protein kinase activity.In summary, the effect of insulin treatment of diabetic rats to restore glucose regulation of hepatic glycogen synthase probably involves synthesis of new protein, and the data remain consistent with the hypothesis that the defect may be due to a diabetes-related deficiency in a specific synthase phosphatase and/or alteration of the synthase molecule itself.  相似文献   

16.
To determine the role of adrenal medullary hormones in controlling the rate of liver glycogenolysis during exercise, adrenodemedullated (ADM) and sham-operated (SO) rats were run on a rodent treadmill at 21 m/min up a 15% grade for 0, 30, or 60 min. Rats were anesthetized by intravenous injection of pentobarbital sodium, and liver, muscle, and blood were collected and frozen. Liver glycogen decreased at similar rates in ADM and SO rats. Hepatic adenosine 3',5'-cyclic monophosphate (cAMP), plasma glucagon, and plasma free fatty acids increased to the same extent in both ADM and SO rats. The adrenodemedullation caused a reduction in glycogenolysis in the fast-twitch white region of the quadriceps, soleus, and lateral gastrocnemius during exercise. The normal exercise-induced increase in blood glucose and lactate and the decline in plasma insulin were not observed in the demedullated rats. During submaximal exercise the principal targets for epinephrine released from the adrenal medulla appear to be pancreatic beta-cells and skeletal muscle and not the liver.  相似文献   

17.
Summary The acinar activity pattern of phosphoenolpyruvate carboxykinase (PEPCK) was investigated in livers of streptozotocin diabetic male and female rats and in addition in livers of diabetic males, which had undergone estrogen treatment. In all diabetic animals blood glucose levels were supranormal and liver PEPCK activity was increased. This increase in activity was greatest in estrogen treated diabetic males and lowest in diabetic females. Plasma insulin levels were reduced after the application of streptozotocin to otherwise normal male and female rats. Yet, in males treated in addition with estrogens the plasma insulin levels reached the normal range again. The PEPCK activity showed a heterotopic distribution along the acinus. The periportal to perivenous gradient was steeper in males compared to females in the untreated as well as in the diabetic state. The application of estrogens to males resulted in a further steepening of the gradient.  相似文献   

18.
Inhibition of hepatic glycogenolysis by an intracellular inhibitor of cAMP-dependent protein kinase in glucagon-stimulated hepatocytes was potentiated by insulin. When hepatocytes isolated from fed rats were treated with 0.3 nM glucagon, which activates glycogen breakdown half-maximally, the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate [Rp-cAMPS), a cAMP antagonist, inhibited glucose production half-maximally at 3 microM. A 10-fold lower concentration of antagonist was required to half-maximally inhibit glucose production in the presence of 10 nM insulin, which alone produced only 15% inhibition. Under the same experimental conditions, the maximal effect of (Rp)-cAMPS was also potentiated. In addition, the increase in the concentration of glucagon required for half-maximal activation of phosphorylase activity and inactivation of glycogen synthase activity in the presence of minimally effective concentrations of insulin and (Rp)-cAMPS were clearly synergistic. It is postulated that the synergism observed is a consequence of action at several enzymatic sites leading to, and including, alteration of the phosphorylation state of the two rate-limiting enzymes in glycogen metabolism.  相似文献   

19.
In this study, the contribution of liver glycogenolysis and gluconeogenesis in the defense against short-term insulin induced hypoglycemia (IIH) was investigated. For this purpose, we used an experimental model in which IIH was obtained by administering an IP injection of a pharmacological dose (1 U/kg) of regular insulin to rats that had been deprived of food for a period of six hours. This experimental model is suitable to study the simultaneous participation of glycogen breakdown and gluconeogenesis in the defense against IIH. The livers of IIH rats showed insignificant changes in the glycogen concentration, total phosphorylase, active phosphorylase, and percent of active phosphorylase. Our results also indicated that the livers of IIH rats that received the concentration of L-alanine, L-glutamine, L-lactate, or glycerol found in the blood during IIH (basal values) showed negligible glucose production. Nonetheless, glucose, urea, and pyruvate production increased (P<0.05) if the livers were perfused with a saturating concentration of gluconeogenic precursors. In agreement with these results, IIH rats that received intragastric L-alanine, L-glutamine, or L-lactate showed increased (P<0.05) glycemia 30 min after the administration of these substances. However, when using glycerol, higher glycemia (P<0.05) was observed at 2 and 5 min, but not 30 min after the administration of this hepatic gluconeogenic precursor. Thus, we can conclude that the oral availability of gluconeogenic precursors could allow for their use as important antidote in the defense against IIH.  相似文献   

20.
Weanling female Wistar rats were supplemented with fish oil (1 g/kg body weight) for one generation. The male offspring received the same supplementation until to adult age. Rats supplemented with coconut fat were used as reference. Some rats were inoculated subcutaneously with a suspension (2 x 10(7) cells/mL) of Walker 256 tumor. At day 3, when the tumor was palpable, rats were treated with naproxen (N) (0.1 mg/mL), clenbuterol (Cb) (0.15 mg/kg body weight), and insulin (I) (10 U/kg body weight). At day 14 after tumor inoculation, the animals were killed. Tumor was removed and weighed. Blood, liver, and skeletal muscles were also collected for measurements of metabolites and insulin. In both tumor-bearing untreated rats and tumor-bearing rats supplemented with coconut fat, tumor growth, triacylglycerol, and blood lactate levels were higher, and glycogen content of the liver, blood glucose, cholesterol and HDL-cholesterol levels were lower as compared with the non-tumor-bearing and fish oil supplemented groups. Fish oil supplementation of tumor-bearing rats led to a partial recovery of the glycogen content in the liver and a full reversion of blood glucose, lactate, cholesterol, and HDL-cholesterol levels. The treatment with N plus Cb plus I attenuated cancer cachexia and decreased tumor growth in both coconut fat and fish oil supplemented rats. In conclusion, chronic fish oil supplementation decreased tumor growth and partially recovered cachexia. This beneficial effect of fish oil supplementation was potentiated by treatment with naproxen plus clenbuterol plus insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号