首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used plant root tips frozen under high pressure in conjunction with freeze-fracture electron microscopy a) to evaluate the quality of freezing of unfixed, non-cryoprotected tissues obtainable with this method, b) to examine the structure of cells frozen under high pressure, c) to evaluate the usefulness of high pressure freezing to preserve transient membrane events, and d) to look for artifacts caused by the high pressure. A single artifact of high pressure, possibly related to the collapse of air spaces during pressurization before freezing, manifested itself as long tears or folds in the plasma membrane. Excellent freezing, as evidenced by the smooth, turgid appearance of all membrane systems and the lack of aggregated cytosolic materials was observed in 10 to 20% of samples. In the best preserved specimens freezing was uniform throughout the sample volume and all organelles were readily identified. In the remaining ones, a gradient of ice crystal sizes was seen; cells within 50 to 100 microns of the surface being better preserved than those in the interior. Cortical microtubules appeared well preserved as were close associations of endoplasmic reticulum (ER) with nuclear, Golgi and plasma membranes. Junctions between the ER and nuclear membrane were constricted and much thinner (30 nm in diameter) than in chemically-fixed, thin-sectioned tissue, and although no continuities between the ER and Golgi membranes were observed, many Golgi stacks had an adjacent ER cisterna either at the cis or trans face. Both Golgi and ER cisternae exhibited distinct, round dilations indicative of vesicle blebbing or vesicle fusion events. Characteristic disc- and horseshoe-shaped infoldings of the plasma membrane corresponding to fused secretory vesicle and/or membrane recycling structures were also prominent in many cells. Short extensions of the cortical ER cisternae were regularly observed appressed against these plasma membrane infoldings suggesting a functional role for the ER in vesicle-mediated secretion and/or membrane recycling. Many lipid bodies were intimately associated with the ER, some with their surface monolayer fused with the cytoplasmic leaflet of the ER membrane. Our findings demonstrate that high pressure freezing can provide excellent morphological preservation of intact tissues and can preserve fast, transient membrane events such as those associated with vesicle fusion and vesicle blebbing. We conclude that this is the best available method for freezing relatively large (up to 0.6 mm thick) tissue samples for study by electron microscopy.  相似文献   

2.
Ultrastructure of lactating bovine and rat mammary epithelial cells was studied with emphasis on secretory vesicle interactions. In the apical zone of the cell, adjacent secretory vesicles formed ball and socket configurations at their points of apposition. Similar configurations were formed between plasma membrane and secretory vesicle membrane. These structures may be formed by the diffusion of water between vesicles with different osmotic potentials. Frequently, vesicular chains consisting of 10 or more linked secretory vesicles were observed. Prior to the exocytotic release of casein micelles, adjacent vesicles fused through fragmentation of the ball and socket membrane. These membrane fragments and the casein micelles appeared to be secreted into the alveolar lumen after passing from one vesicle into another and finally through a pore in the apical plasma membrane. Emptied vesicular chains appeared to collapse and fragmentation of their membrane was observed. Based on these observations, we suggest that most vesicular membrane does not directly contact or become incorporated into the plasma membrane during secretion of the nonfat phase of milk.  相似文献   

3.
McFarlane HE  Young RE  Wasteneys GO  Samuels AL 《Planta》2008,227(6):1363-1375
During their differentiation Arabidopsis thaliana seed coat cells undergo a brief but intense period of secretory activity that leads to dramatic morphological changes. Pectic mucilage is secreted to one domain of the plasma membrane and accumulates under the primary cell wall in a ring-shaped moat around an anticlinal cytoplasmic column. Using cryofixation/transmission electron microscopy and immunofluorescence, the cytoskeletal architecture of seed coat cells was explored, with emphasis on its organization, function and the large amount of pectin secretion at 7 days post-anthesis. The specific domain of the plasma membrane where mucilage secretion is targeted was lined by abundant cortical microtubules while the rest of the cortical cytoplasm contained few microtubules. Actin microfilaments, in contrast, were evenly distributed around the cell. Disruption of the microtubules in the temperature-sensitive mor1-1 mutant affected the eventual release of mucilage from mature seeds but did not appear to alter the targeted secretion of vesicles to the mucilage pocket, the shape of seed coat cells or their secondary cell wall deposition. The concentration of cortical microtubules at the site of high vesicle secretion in the seed coat may utilize the same mechanisms required for the formation of preprophase bands or the bands of microtubules associated with spiral secondary cell wall thickening during protoxylem development.  相似文献   

4.
The central organelle within the secretory pathway is the Golgi apparatus, a collection of flattened membranes organized into stacks. The cisternal maturation model of intra-Golgi transport depicts Golgi cisternae that mature from cis to medial to trans by receiving resident proteins, such as glycosylation enzymes via retrograde vesicle-mediated recycling. The conserved oligomeric Golgi (COG) complex, a multi-subunit tethering complex of the complexes associated with tethering containing helical rods family, organizes vesicle targeting during intra-Golgi retrograde transport. The COG complex, both physically and functionally, interacts with all classes of molecules maintaining intra-Golgi trafficking, namely SNAREs, SNARE-interacting proteins, Rabs, coiled-coil tethers, vesicular coats, and molecular motors. In this report, we will review the current state of the COG interactome and analyze possible scenarios for the molecular mechanism of the COG orchestrated vesicle targeting, which plays a central role in maintaining glycosylation homeostasis in all eukaryotic cells.  相似文献   

5.
During its intra-erythrocytic development Plasmodium falciparum establishes a membrane network beyond its own limiting membrane in the cytoplasm of its host. These membrane structures play an important role in the trafficking of virulence proteins to the erythrocyte surface, however their ultrastructure is only partly defined and there is on-going debate regarding their origin, organisation and connectivity. We have used two whole cell imaging modalities to explore the topography of parasitised erythrocytes. Three-dimensional structured illumination microscopy provides resolution beyond the optical diffraction limit and permits analysis of fluorescently labelled whole cells. Immunoelectron tomography offers the possibility of high resolution imaging of individual ultrastructural features in a cellular context. Combined with serial sectioning and immunogold labelling, this technique permits precise mapping of whole cell architecture. We show that the P. falciparum exported secretory system comprises a series of modular units, comprising flattened cisternae, known as Maurer’s clefts, tubular connecting elements, two different vesicle populations and electron-dense structures that have fused with the erythrocyte membrane. The membrane network is not continuous, pointing to an important role for vesicle-mediated transport in the delivery of cargo to different destinations in the host cell.  相似文献   

6.
The spermatozoa of both Clavelina lepadiformis and Ciona intestinalis have architectural features characteristic of ascidian spermatozoa that have been previously described. They have an elongated head (6 microm and 3 microm long, respectively) and a single mitochondrion that is closely applied laterally to the nucleus; they lack a midpiece. The acrosome of Clavelina lepadiformis spermatozoa is a moderately electron-dense, pear-shaped flattened vesicle, approx. 300 nm x 200 nm x 40 nm in length, width, and height, respectively. The acrosome of Ciona intestinalis spermatozoa is a moderately electron-dense, round flattened vesicle with an electron-dense plate in its central region. It is approx. 200 nm x 200 nm x 50 nm in length, width, and height, respectively. During spermiogenesis in both ascidians, several proacrosomal vesicles (50-70 nm in diameter) appear in a blister at the future apex of the spermatids. These vesicles appear to be associated with the inner surface of the plasma membrane enclosing the blister. They come into contact with each other along the inner surface of the plasma membrane and fuse to form a horseshoe-shaped acrosomal vesicle, which becomes a round, flattened vesicle during further differentiation. Some speculations about the mechanism of acrosome differentiation, the possible role of the acrosome during fertilization, and in the speciation of ascidians are presented.  相似文献   

7.
Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins mediate cellular membrane fusion events and provide a level of specificity to donor-acceptor membrane interactions. However, the trafficking pathways by which individual SNARE proteins are targeted to specific membrane compartments are not well understood. In neuroendocrine cells, synaptosome-associated protein of 25 kDa (SNAP25) is localized to the plasma membrane where it functions in regulated secretory vesicle exocytosis, but it is also found on intracellular membranes. We identified a dynamic recycling pathway for SNAP25 in PC12 cells through which plasma membrane SNAP25 recycles in approximately 3 h. Approximately 20% of the SNAP25 resides in a perinuclear recycling endosome-trans-Golgi network (TGN) compartment from which it recycles back to the plasma membrane. SNAP25 internalization occurs by constitutive, dynamin-independent endocytosis that is distinct from the dynamin-dependent endocytosis that retrieves secretory vesicle constituents after exocytosis. Endocytosis of SNAP25 is regulated by ADP-ribosylation factor (ARF)6 (through phosphatidylinositol bisphosphate synthesis) and is dependent upon F-actin. SNAP25 endosomes, which exclude the plasma membrane SNARE syntaxin 1A, merge with those derived from clathrin-dependent endocytosis containing endosomal syntaxin 13. Our results characterize a robust ARF6-dependent internalization mechanism that maintains an intracellular pool of SNAP25, which is compatible with possible intracellular roles for SNAP25 in neuroendocrine cells.  相似文献   

8.
The influence of flight activity on the formation of secretory granules and the concomitant membrane recycling by the rans-Golgi network in the peptidergic neurosecretory adipokinetic cells of Locusta migratoria was investigated by means of ultrastructural morphometric methods. The patterns of labelling of the trans-Golgi network by the exogenous adsorptive endocytotic tracer wheat-germ agglutinin-conjugated horseradish peroxidase and by the endogenous marker enzyme acid phosphatase were used as parameters and were measured by an automatic image analysis system. The results show that endocytosed fragments of plasma membrane with bound peroxidase label were transported to the trans-Golgi network and used to build new secretory granules. The amounts of peroxidase and especially of acid phosphatase within the trans-Golgi network showed a strong tendency to be smaller in flight-stimulated cells than in non-stimulated cells. The amounts of acid phosphatase in the immature secretory granules originating from the trans-Golgi network were significantly smaller in stimulated cells. The number of immature secretory granules positive for acid phosphatase tended to be higher in stimulated cells. Thus, flight stimulation of adipokinetic cells for 1 h influences the functioning of the trans-Golgi network; this most probably results in a slight enhancement of the production of secretory granules by the trans-Golgi network.  相似文献   

9.
Summary The following five cell types have been recognized and defined on the basis of their fine structure in the gastric epithelium of B. schlosseri: vacuolated and zymogenic cells (described in a previous paper); ciliated mucous, endocrine and plicated cells. The ciliated mucous cells are distributed at the apex and the bottom of the gastric folds and along the dorsal groove. The mucus droplets appear to form from the Golgi complex as secretory granules of variable density and texture, which are released from the cell after fusion of their membranes with the apical plasma membrane. Holocrine or apocrine secretion has not been observed. The endocrine cells are scattered and are characterized by electron dense granules, especially numerous in the basal region of the cell. Finally, the plicated cells, present in the pyloric caecum, show rod-like microvilli, a well developed Golgi complex and abundant, deep infoldings of the basal plasma membrane, which are associated with numerous mitochondria. The possible role of the gastric cell types is discussed taking into account information concerning morphologically similar cells in other animals, as well as previously reported data on the biochemistry and physiology of digestion and excretion in ascidians.The authors are grateful to Mr. G. Tognon for technical help and to the Staff of the Stazione Idrobiologica di Chioggia for their assistance in collecting material. Work supported by a C.N.R. Grant from the Istituto di Biologia del Mare, Venezia, Contract n. 71.00396/04.115.542.  相似文献   

10.
Limbach C  Staehelin LA  Sievers A  Braun M 《Planta》2008,227(5):1101-1114
We provide a 3D ultrastructural analysis of the membrane systems involved in tip growth of rhizoids of the green alga Chara. Electron tomography of cells preserved by high-pressure freeze fixation has enabled us to distinguish six different types of vesicles in the apical cytoplasm where the tip growth machinery is accommodated. The vesicle types are: dark and light secretory vesicles, plasma membrane-associated clathrin-coated vesicles (PM-CCVs), Spitzenkoerper-associated clathrin-coated vesicles (Sp-CCVs) and coated vesicles (Sp-CVs), and microvesicles. Each of these vesicle types exhibits a distinct distribution pattern, which provides insights into their possible function for tip growth. The PM-CCVs are confined to the cytoplasm adjacent to the apical plasma membrane. Within this space they are arranged in clusters often surrounding tubular plasma membrane invaginations from which CCVs bud. This suggests that endocytosis and membrane recycling are locally confined to specialized apical endocytosis sites. In contrast, exocytosis of secretory vesicles occurs over the entire membrane area of the apical dome. The Sp-CCVs and the Sp-CVs are associated with the aggregate of endoplasmic reticulum membranes in the center of the growth-organizing Spitzenkoerper complex. Here, Sp-CCVs are seen to bud from undefined tubular membranes. The subapical region of rhizoids contains a vacuolar reticulum that extends along the longitudinal cell axis and consists of large, vesicle-like segments interconnected by thin tubular domains. The tubular domains are encompassed by thin filamentous structures resembling dynamin spirals which could drive peristaltic movements of the vacuolar reticulum similar to those observed in fungal hyphae. The vacuolar reticulum appears to serve as a lytic compartment into which multivesicular bodies deliver their internal vesicles for molecular recycling and degradation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
B. McLean  B. E. Juniper 《Planta》1986,169(2):153-161
Young elongating internodal cells of Chara globularis var. capillacea (Thuill.) Zanev. were rapidly frozen and freze-fractured in order to observed transient events occurring within the plasma membrane. Several structures have been observed. Relatively small depressions, varying in depth, are prolific and scattered at random over the plasma membrane. Charasomes and clusters of particle rosettes are common. Arrays of intramembrane particle lines are a characteristic feature of the internodal cell plasma membrane. The charasomes and the arrays of particle lines occupy a considerable proportion of the plasma membrane. In these young cells, substantial movement must take place across this membrane and its basic structure must fluctuate accordingly. The innumerable small depressions may represent pinocytotic and secretory processes. The array of intramembrane particle lines may represent stages in fusion between the membranes of vesicles within the cytoplasm and the plasma membrane. The technique of ultra-rapid freezing allows these events and their intermediate stages to be visualised; some features of the membrane may only be seen by this method.  相似文献   

12.
Summary Primary roots of maize seedlings have been treated with solutions of lanthanum and lead salts in an attempt to demonstrate endocytosis. Subsurface cells in the root cap reveal deposits of these heavy metals in coated pits in the plasma membrane and in coated vesicles. In addition lead deposits were observed in coated evaginations (pits) on large (secretory) vesicles present at the trans-pole of the Golgi apparatus and on small vacuoles. Lead was also found in the peripheral regions of individual cisternae throughout the dictyosomal stack. We interpret our results as providing evidence for coated pit/coated vesicle-mediated endocytosis and for the direct recycling of plasma membrane to the Golgi apparatus.  相似文献   

13.
The classical model of secretory vesicle recycling after exocytosis involves the retrieval of membrane (the omega figure) at a different site. An alternative model involves secretory vesicles transiently fusing with the plasma membrane (the 'kiss and run' mechanism) [1,2]. No continuous observation of the fate of a single secretory vesicle after exocytosis has been made to date. To study the dynamics of fusion immediately following exocytosis of insulin-containing vesicles, enhanced green fluorescent protein (EGFP) fused to the vesicle membrane protein phogrin [3] was delivered to the secretory vesicle membrane of INS-1 beta-cells using an adenoviral vector. The behaviour of the vesicle membrane during single exocytotic events was then examined using evanescent wave microscopy [4-6]. In unstimulated cells, secretory vesicles showed only slow Brownian movement. After a depolarizing pulse, most vesicles showed a small decrease in phogrin-EGFP fluorescence, and some moved laterally over the plasma membrane for approximately 1 microm. In contrast, secretory vesicles loaded with acridine orange all showed a transient (33-100 ms) increase in fluorescence intensity followed by rapid disappearance. Simultaneous observations of phogrin-EGFP and acridine orange indicated that the decrease in EGFP fluorescence occurred at the time of the acridine orange release, and that the lateral movement of EGFP-expressing vesicles occurred after this. Post-exocytotic retrieval of the vesicle membrane in INS-1 cells is thus slow, and can involve the movement of empty vesicles under the plasma membrane ('kiss and glide').  相似文献   

14.
The ultrastructural organization of actively secreting barley (Hordeum vulgare L. cv. Himalaya) aleurone cells was examined using ultrarapid-freezing (<-10 000°C s-1) followed by freeze-fracture and freeze-substitution. Our analysis indicates that much of the evidence supporting a direct pathway from the endoplasmic reticulum (ER) to the plasma membrane (i.e. bypassing the Golgi apparatus) for the secretion of -amylase (EC 3.2.1.1) may not be valid. Cryofixed ER cisternae show no sign of vesiculation during active -amylase secretion in gibberellic acid (GA3)-treated cells. At the same time, Golgi complexes are abundant and numerous small vesicles are associated with the edges of the cisternae. Vesicles appear to be involved in the delivery of secretory products to the plasma membrane since depressions containing excess membrane material appear there. Treatment with GA3 also induces changes in the composition of Golgi membranes; most notably, the density of intramembrane particles increases from 2700 m-2 to 3800 m-2 because of an increase of particles in the 3–8.5-nm size range. A slight decrease in 9–11-nm particles also occurs. These changes in membrane structure appear to occur as the Golgi complex becomes committed to the processing and packaging of secretory proteins. We suggest that secretory proteins in this tissue are synthesized in the abundant rough ER, packaged in the Golgi apparatus, and transported to the plasma membrane via Golgi-derived secretory vesicles. Mobilization of reserves is also accompanied by dynamic membrane events. Our micrographs show that the surface monolayer of the lipid bodies fuses with the outer leaflet of the bilayer of protein-body membranes during the mobilization of lipid reserves. Following the breakdown of the protein reserves, the protein bodies assume a variety of configurations.Abbreviations ER endoplasmic reticulum - GA3 gibberellic acid - P protoplasmic - E exoplasmic  相似文献   

15.
E. Schnepf  P. Christ 《Protoplasma》1980,105(1-2):135-148
Summary The secretory cells of the nectaries ofAsclepias curassavica form a glandular epithelium in the inner parts of the stigmatic chambers. They resemble transfer cells in having many infoldings of the plasmalemma. The wall protuberances, however, are poorly developed and often lacking. The plasmalemma is highly convoluted and forms, in places, external compound membranes where the extracytoplasmic space is collapsed completely. Active glands contain dilated cisternae of the ER and large vesicles which are mainly associated with the cis face of the dictyosomes. In addition, small vesicles are observed in high number. It is discussed whether the secretion is granulocrine or eccrine and whether the enlargement of the plasmalemma is the cause or the consequence of the high secretory activity. After the secretory phase the outer peripheral part of the cytoplasm disintegrates. The remaining part of the protoplast is covered by a new plasmalemma.  相似文献   

16.
Summary Ultrastructural aspects of the secretory and the endocytotic pathways and the lysosomal system of corpus cardiacum glandular cells (CCG cells) of migratory locusts were studied using morphological, marker enzyme, immunocytochemical and tracer techniques. It is concluded that (1) the distribution of marker enzymes of trans Golgi cisternae and trans Golgi network (TGN) in locust CCG cells corresponds to that in most non-stimulated vertebrate secretory cell types; (2) the acid phosphatase-positive TGN in CCG cells is involved in sorting and packaging of secretory material and lysosomal enzymes; (3) these latter substances are produced continuously; (4) at the same time, superfluous secretory granules and other old cell organelles are degraded; (5) the remarkable endocytotic activity in the cell bodies and the minor endocytotic activity in cell processes are coupled mainly to constitutive uptake of nutritional and/or regulatory (macro)molecules, rather than to exocytosis; (6) plasma membrane recycling occurs mainly by direct fusion of tubular endosomal structures with the plasma membrane and little traffic passes the Golgi/TGN; and (7) so-called cytosomes arise mainly from autophagocytotic vacuoles and represent a special kind of complex secondary lysosomes involved in the final degradation of endogenous (cell organelles) and exogenous material.  相似文献   

17.
Membrane recycling in pancreatic acinar cells involves endocytic vesicle formation at the apical cell surface and rapid membrane traffic to the Golgi complex. During this process a small amount of extracellular content is taken up from the acinar lumen. In order to determine whether secretory proteins already released into the pancreatic acinar lumen are reinternalized during membrane retrieval, 3H-labeled amylase or 125I-labeled secretory proteins were reinfused through the pancreatic duct until the lumina were reached. Tissue samples from various time points were prepared for light and electron microscope autoradiography. The observations showed that [3H]amylase and, to a lesser extent, the 125I-labeled secretory proteins were internalized at the apical cell surface and rapidly (within 2-5 min) transferred to the Golgi cisternae and the condensing vacuoles; only a minor proportion of silver grains was observed over lysosomes. In addition, at later time points, mature secretion granules close to the Golgi complex became labeled. The results indicate that exocytosis in the rat exocrine pancreas does not operate at 100% efficiency; part of the exported amylase and part of the total secretion product are reinternalized concomitantly with the endocytic removal of plasma membrane and are copackaged together with newly synthesized secretory proteins.  相似文献   

18.
The dynamin family of GTP-binding proteins has been implicated as playing an important role in endocytosis. In Drosophila shibire, mutations of the single dynamin gene cause blockade of endocytosis and neurotransmitter release, manifest as temperature-sensitive neuromuscular paralysis. Mammals express three dynamin genes: the neural specific dynamin I, ubiquitous dynamin II, and predominantly testicular dynamin III. Mutations of dynamin I result in a blockade of synaptic vesicle recycling and receptor-mediated endocytosis. Here, we show that dynamin II plays a key role in controlling constitutive and regulated hormone secretion from mouse pituitary corticotrope (AtT20) cells. Dynamin II is preferentially localized to the Golgi apparatus where it interacts with G-protein betagamma subunit and regulates secretory vesicle release. The presence of dynamin II at the Golgi apparatus and its interaction with the betagamma subunit are mediated by the pleckstrin homology domain of the GTPase. Overexpression of the pleckstrin homology domain, or a dynamin II mutant lacking the C-terminal SH3-binding domain, induces translocation of endogenous dynamin II from the Golgi apparatus to the plasma membrane and transformation of dynamin II from activity in the secretory pathway to receptor-mediated endocytosis. Thus, dynamin II regulates secretory vesicle formation from the Golgi apparatus and hormone release from mammalian neuroendocrine cells.  相似文献   

19.
The release of regulated secretory granules is known to be calcium dependent. To examine the Ca2+-dependence of other exocytic fusion events, transferrin recycling in bovine chromaffin cells was examined. Internalised 125I-transferrin was released constitutively from cells with a half-time of about 7 min. Secretagogues that triggered catecholamine secretion doubled the rate of 125I-transferrin release, the time courses of the two triggered secretory responses being similar. The triggered 125I-transferrin release came from recycling endosomes rather than from sorting endosomes or a triggered secretory vesicle pool. Triggered 125I-transferrin release, like catecholamine secretion from the same cells, was calcium dependent but the affinities for calcium were very different. The extracellular calcium concentrations that gave rise to half-maximal evoked secretion were 0.1 m m for 125I-transferrin and 1.0 m m for catecholamine, and the intracellular concentrations were 0.1 μ m and 1 μ m , respectively. There was significant 125I-transferrin recycling in the virtual absence of intracellular Ca2+, but the rate increased when Ca2+ was raised above 1 n m , and peaked at 1 μ m when the rate had doubled. Botulinum toxin type D blocked both transferrin recycling and catecholamine secretion. These results indicate that a major component of the vesicular transport required for the constitutive recycling of transferrin in quiescent cells is calcium dependent and thus under physiological control, and also that some of the molecular machinery involved in transferrin recycling/fusion processes is shared with that for triggered neurosecretion.  相似文献   

20.
During constitutive secretion, proteins synthesized at the endoplasmic reticulum (ER) are transported to the Golgi complex for processing and then to the plasma membrane for incorporation or extracellular release. This study uses a unique live-cell constitutive secretion assay to establish roles for the molecular motor myosin VI and its binding partner optineurin in discrete stages of secretion. Small interfering RNA-based knockdown of myosin VI causes an ER-to-Golgi transport delay, suggesting an unexpected function for myosin VI in the early secretory pathway. Depletion of myosin VI or optineurin does not affect the number of vesicles leaving the trans-Golgi network (TGN), indicating that these proteins do not function in TGN vesicle formation. However, myosin VI and optineurin colocalize with secretory vesicles at the plasma membrane. Furthermore, live-cell total internal reflection fluorescence microscopy demonstrates that myosin VI or optineurin depletion reduces the total number of vesicle fusion events at the plasma membrane and increases both the proportion of incomplete fusion events and the number of docked vesicles in this region. These results suggest a novel role for myosin VI and optineurin in regulation of fusion pores formed between secretory vesicles and the plasma membrane during the final stages of secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号