首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forty-five different point mutations in POLG, the gene encoding the catalytic subunit of the human mitochondrial DNA polymerase (pol γ), cause the early onset mitochondrial DNA depletion disorder, Alpers syndrome. Sequence analysis of the C-terminal polymerase region of pol γ revealed a cluster of four Alpers mutations at highly conserved residues in the thumb subdomain (G848S, c.2542g→a; T851A, c.2551a→g; R852C, c.2554c→t; R853Q, c.2558g→a) and two Alpers mutations at less conserved positions in the adjacent palm subdomain (Q879H, c.2637g→t and T885S, c.2653a→t). Biochemical characterization of purified, recombinant forms of pol γ revealed that Alpers mutations in the thumb subdomain reduced polymerase activity more than 99% relative to the wild-type enzyme, whereas the palm subdomain mutations retained 50–70% wild-type polymerase activity. All six mutant enzymes retained physical and functional interaction with the pol γ accessory subunit (p55), and none of the six mutants exhibited defects in misinsertion fidelity in vitro. However, differential DNA binding by these mutants suggests a possible orientation of the DNA with respect to the polymerase during catalysis. To our knowledge this study represents the first structure-function analysis of the thumb subdomain in pol γ and examines the consequences of mitochondrial disease mutations in this region.As the only DNA polymerase found in animal cell mitochondria, DNA polymerase γ (pol γ)3 bears sole responsibility for DNA synthesis in all replication and repair transactions involving mitochondrial DNA (1, 2). Mammalian cell pol γ is a heterotrimeric complex composed of one catalytic subunit of 140 kDa (p140) and two 55-kDa accessory subunits (p55) that form a dimer (3). The catalytic subunit contains an N-terminal exonuclease domain connected by a linker region to a C-terminal polymerase domain. Whereas the exonuclease domain contains essential motifs I, II, and III for its activity, the polymerase domain comprising the thumb, palm, and finger subdomains contains motifs A, B, and C that are crucial for polymerase activity. The catalytic subunit is a family A DNA polymerase that includes bacterial pol I and T7 DNA polymerase and possesses DNA polymerase, 3′ → 5′ exonuclease, and 5′-deoxyribose phosphate lyase activities (for review, see Refs. 1 and 2). The 55-kDa accessory subunit (p55) confers processive DNA synthesis and tight binding of the pol γ complex to DNA (4, 5).Depletion of mtDNA as well as the accumulation of deletions and point mutations in mtDNA have been observed in several mitochondrial disorders (for review, see Ref. 6). mtDNA depletion syndromes are caused by defects in nuclear genes responsible for replication and maintenance of the mitochondrial genome (7). Mutation of POLG, the gene encoding the catalytic subunit of pol γ, is frequently involved in disorders linked to mutagenesis of mtDNA (8, 9). Presently, more than 150 point mutations in POLG are linked with a wide variety of mitochondrial diseases, including the autosomal dominant (ad) and recessive forms of progressive external ophthalmoplegia (PEO), Alpers syndrome, parkinsonism, ataxia-neuropathy syndromes, and male infertility (tools.niehs.nih.gov/polg) (9).Alpers syndrome, a hepatocerebral mtDNA depletion disorder, and myocerebrohepatopathy are rare heritable autosomal recessive diseases primarily affecting young children (1012). These diseases generally manifest during the first few weeks to years of life, and symptoms gradually develop in a stepwise manner eventually leading to death. Alpers syndrome is characterized by refractory seizures, psychomotor regression, and hepatic failure (11, 12). Mutation of POLG was first linked to Alpers syndrome in 2004 (13), and to date 45 different point mutations in POLG (18 localized to the polymerase domain) are associated with Alpers syndrome (9, 14, 15). However, only two Alpers mutations (A467T and W748S, both in the linker region) have been biochemically characterized (16, 17).During the initial cloning and sequencing of the human, Drosophila, and chicken pol γ genes, we noted a highly conserved region N-terminal to motif A in the polymerase domain that was specific to pol γ (18). This region corresponds to part of the thumb subdomain that tracks DNA into the active site of both Escherichia coli pol I and T7 DNA polymerase (1921). A high concentration of disease mutations, many associated with Alpers syndrome, is found in the thumb subdomain.Here we investigated six mitochondrial disease mutations clustered in the N-terminal portion of the polymerase domain of the enzyme (Fig. 1A). Four mutations (G848S, c.2542g→a; T851A, c.2551a→g; R852C, c.2554c→t; R853Q, c.2558g→a) reside in the thumb subdomain and two (Q879H, c.2637g→t and T885S, c.2653a→t) are located in the palm subdomain. These mutations are associated with Alpers, PEO, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), ataxia-neuropathy syndrome, Leigh syndrome, and myocerebrohepatopathy (
POLG mutationDiseaseGeneticsReference
G848SAlpers syndromeIn trans with A467T, Q497H, T251I-P587L, or W748S-E1143G in Alpers syndrome15, 35, 4350
Leigh syndromeIn trans with R232H in Leigh syndrome49
MELASIn trans with R627Q in MELAS38
PEO with ataxia-neuropathyIn trans with G746S and E1143G in PEO with ataxia50
PEOIn trans with T251I and P587L in PEO51, 52
T851AAlpers syndromeIn trans with R1047W48, 53
In trans with H277C
R852CAlpers syndromeIn trans with A467T14, 48, 50
In cis with G11D and in trans with W748S-E1143G or A467T
Ataxia-neuropathyIn trans with G11D-R627Q15
R853QMyocerebrohepatopathyIn trans with T251I-P587L15
Q879HAlpers syndrome with valproate-induced hepatic failureIn cis with E1143G and in trans with A467T-T885S35, 54
T885SAlpers syndrome with valproate-induced hepatic failureIn cis with A467T and in trans with Q879H-E1143G35, 54
Open in a separate windowOpen in a separate windowFIGURE 1.POLG mutations characterized in this study. A, the location of the six mutations characterized is shown in red in the primary sequence of pol γ. Four mutations, the G848S, T851A, R852C, and R853Q, are located in the thumb domain, whereas two mutations, the Q879H and T885S, are in the palm domain of the polymerase region. B, sequence alignment of pol γ from yeast to humans. The amino acids characterized in this study are shown in red. Yellow-highlighted amino acids are highly conserved, and blue-highlighted amino acids are moderately conserved.  相似文献   

2.
Mitochondrial DNA Mutations and Pathogenesis   总被引:26,自引:0,他引:26  
Eric A. Schon  Eduardo Bonilla  Salvatore DiMauro 《Journal of bioenergetics and biomembranes》1997,29(2):131-149
Approximately three years ago, this journal published a review on the clinical and molecular analysis of mitochondrial encephalomyopathies, with emphasis on defects in mitochondrial DNA (mtDNA). At that time, approximately 30 point mutations associated with a variety of maternally-inherited (or rarely, sporadic) disorders had been described. Since that time, almost twenty new pathogenic mtDNA point mutations have been described, and the pace of discovery of such mutations shows no signs of abating. This accumulating body of data has begun to reveal some patterns that may be relevant to pathogenesis.  相似文献   

3.
Clonal Expansion of Early to Mid-Life Mitochondrial DNA Point Mutations Drives Mitochondrial Dysfunction during Human Ageing     
Laura C. Greaves  Marco Nooteboom  Joanna L. Elson  Helen A. L. Tuppen  Geoffrey A. Taylor  Daniel M. Commane  Ramesh P. Arasaradnam  Konstantin Khrapko  Robert W. Taylor  Thomas B. L. Kirkwood  John C. Mathers  Douglass M. Turnbull 《PLoS genetics》2014,10(9)
Age-related decline in the integrity of mitochondria is an important contributor to the human ageing process. In a number of ageing stem cell populations, this decline in mitochondrial function is due to clonal expansion of individual mitochondrial DNA (mtDNA) point mutations within single cells. However the dynamics of this process and when these mtDNA mutations occur initially are poorly understood. Using human colorectal epithelium as an exemplar tissue with a well-defined stem cell population, we analysed samples from 207 healthy participants aged 17–78 years using a combination of techniques (Random Mutation Capture, Next Generation Sequencing and mitochondrial enzyme histochemistry), and show that: 1) non-pathogenic mtDNA mutations are present from early embryogenesis or may be transmitted through the germline, whereas pathogenic mtDNA mutations are detected in the somatic cells, providing evidence for purifying selection in humans, 2) pathogenic mtDNA mutations are present from early adulthood (<20 years of age), at both low levels and as clonal expansions, 3) low level mtDNA mutation frequency does not change significantly with age, suggesting that mtDNA mutation rate does not increase significantly with age, and 4) clonally expanded mtDNA mutations increase dramatically with age. These data confirm that clonal expansion of mtDNA mutations, some of which are generated very early in life, is the major driving force behind the mitochondrial dysfunction associated with ageing of the human colorectal epithelium.  相似文献   

4.
Human Disease-Associated Mitochondrial Mutations Fixed in Nonhuman Primates     
de Magalhães JP 《Journal of molecular evolution》2005,61(4):491-497
A number of human disease-associated sequences have been reported in other species, such as rodents, but compensatory changes appear to prevent these deleterious mutations from being expressed. The aim of this work was to compare the mitochondrial DNA of multiple primates to ascertain whether mitochondrial disease-causing sequences in humans are fixed in nonhuman primates. Indeed, 46 sequences related to human pathology were identified in 1 or more of the 12 studied nonhuman primates, the majority of which were associated with late-onset diseases. Most of these sequences can be explained by the presence of secondary compensatory changes that render these mutations phenotypically inert. Nonetheless, and since humans not only are the longest-lived primate but feature the largest brain, one hypothesis is that a gradual optimization of the human mitochondrion occurred in the hominid lineage driven by the need to optimize the aerobic energy metabolism to delay neurodegeneration. Therefore, it is also proposed that some of these disease-associated sequences in nonhuman primates may be linked to the evolution of human longevity and intelligence, indicating a general pattern of selection on longevity in the course of evolution of the human mitochondrion. [Reviewing Editor: Dr. Martin Kreitman]  相似文献   

5.
Recent Mitochondrial DNA Mutations Increase the Risk of Developing Common Late-Onset Human Diseases     
Gavin Hudson  Aurora Gomez-Duran  Ian J. Wilson  Patrick F. Chinnery 《PLoS genetics》2014,10(5)
Mitochondrial DNA (mtDNA) is highly polymorphic at the population level, and specific mtDNA variants affect mitochondrial function. With emerging evidence that mitochondrial mechanisms are central to common human diseases, it is plausible that mtDNA variants contribute to the “missing heritability” of several complex traits. Given the central role of mtDNA genes in oxidative phosphorylation, the same genetic variants would be expected to alter the risk of developing several different disorders, but this has not been shown to date. Here we studied 38,638 individuals with 11 major diseases, and 17,483 healthy controls. Imputing missing variants from 7,729 complete mitochondrial genomes, we captured 40.41% of European mtDNA variation. We show that mtDNA variants modifying the risk of developing one disease also modify the risk of developing other diseases, thus providing independent replication of a disease association in different case and control cohorts. High-risk alleles were more common than protective alleles, indicating that mtDNA is not at equilibrium in the human population, and that recent mutations interact with nuclear loci to modify the risk of developing multiple common diseases.  相似文献   

6.
Simultaneous DNA and RNA Mapping of Somatic Mitochondrial Mutations across Diverse Human Cancers     
James B. Stewart  Babak Alaei-Mahabadi  Radhakrishnan Sabarinathan  Tore Samuelsson  Jan Gorodkin  Claes M. Gustafsson  Erik Larsson 《PLoS genetics》2015,11(6)
  相似文献   

7.
Human Mitochondrial DNA Replication     
Ian J. Holt  Aurelio Reyes 《Cold Spring Harbor perspectives in biology》2012,4(12)
  相似文献   

8.
Mitochondrial DNA Mutations Induce Mitochondrial Dysfunction,Apoptosis and Sarcopenia in Skeletal Muscle of Mitochondrial DNA Mutator Mice     
Asimina Hiona  Alberto Sanz  Gregory C. Kujoth  Reinald Pamplona  Arnold Y. Seo  Tim Hofer  Shinichi Someya  Takuya Miyakawa  Chie Nakayama  Alejandro K. Samhan-Arias  Stephane Servais  Jamie L. Barger  Manuel Portero-Otín  Masaru Tanokura  Tomas A. Prolla  Christiaan Leeuwenburgh 《PloS one》2010,5(7)

Background

Aging results in a progressive loss of skeletal muscle, a condition known as sarcopenia. Mitochondrial DNA (mtDNA) mutations accumulate with aging in skeletal muscle and correlate with muscle loss, although no causal relationship has been established.

Methodology/Principal Findings

We investigated the relationship between mtDNA mutations and sarcopenia at the gene expression and biochemical levels using a mouse model that expresses a proofreading-deficient version (D257A) of the mitochondrial DNA Polymerase γ, resulting in increased spontaneous mtDNA mutation rates. Gene expression profiling of D257A mice followed by Parametric Analysis of Gene Set Enrichment (PAGE) indicates that the D257A mutation is associated with a profound downregulation of gene sets associated with mitochondrial function. At the biochemical level, sarcopenia in D257A mice is associated with a marked reduction (35–50%) in the content of electron transport chain (ETC) complexes I, III and IV, all of which are partly encoded by mtDNA. D257A mice display impaired mitochondrial bioenergetics associated with compromised state-3 respiration, lower ATP content and a resulting decrease in mitochondrial membrane potential (Δψm). Surprisingly, mitochondrial dysfunction was not accompanied by an increase in mitochondrial reactive oxygen species (ROS) production or oxidative damage.

Conclusions/Significance

These findings demonstrate that mutations in mtDNA can be causal in sarcopenia by affecting the assembly of functional ETC complexes, the lack of which provokes a decrease in oxidative phosphorylation, without an increase in oxidative stress, and ultimately, skeletal muscle apoptosis and sarcopenia.  相似文献   

9.
The Role of Mitochondrial DNA Mutations in Hearing Loss     
Yu Ding  Jianhang Leng  Fan Fan  Bohou Xia  Pan Xu 《Biochemical genetics》2013,51(7-8):588-602
Mutations in mitochondrial DNA (mtDNA) are one of the most important causes of hearing loss. Of these, the homoplasmic A1555G and C1494T mutations at the highly conserved decoding site of the 12S rRNA gene are well documented as being associated with either aminoglycoside-induced or nonsyndromic hearing loss in many families worldwide. Moreover, five mutations associated with nonsyndromic hearing loss have been identified in the tRNASer(UCN) gene: A7445G, 7472insC, T7505C, T7510C, and T7511C. Other mtDNA mutations associated with deafness are mainly located in tRNA and protein-coding genes. Failures in mitochondrial tRNA metabolism or protein synthesis were observed from cybrid cells harboring these primary mutations, thereby causing the mitochondrial dysfunctions responsible for deafness. This review article provides a detailed summary of mtDNA mutations that have been reported in deafness and further discusses the molecular mechanisms of these mtDNA mutations in deafness expression.  相似文献   

10.
Mitochondrial DNA Mutations Provoke Dominant Inhibition of Mitochondrial Inner Membrane Fusion     
Cécile Sauvanet  Stéphane Duvezin-Caubet  Bénédicte Salin  Claudine David  Aurélie Massoni-Laporte  Jean-Paul di Rago  Manuel Rojo 《PloS one》2012,7(11)
Mitochondria are highly dynamic organelles that continuously move, fuse and divide. Mitochondrial dynamics modulate overall mitochondrial morphology and are essential for the proper function, maintenance and transmission of mitochondria and mitochondrial DNA (mtDNA). We have investigated mitochondrial fusion in yeast cells with severe defects in oxidative phosphorylation (OXPHOS) due to removal or various specific mutations of mtDNA. We find that, under fermentative conditions, OXPHOS deficient cells maintain normal levels of cellular ATP and ADP but display a reduced mitochondrial inner membrane potential. We demonstrate that, despite metabolic compensation by glycolysis, OXPHOS defects are associated to a selective inhibition of inner but not outer membrane fusion. Fusion inhibition was dominant and hampered the fusion of mutant mitochondria with wild-type mitochondria. Inhibition of inner membrane fusion was not systematically associated to changes of mitochondrial distribution and morphology, nor to changes in the isoform pattern of Mgm1, the major fusion factor of the inner membrane. However, inhibition of inner membrane fusion correlated with specific alterations of mitochondrial ultrastructure, notably with the presence of aligned and unfused inner membranes that are connected to two mitochondrial boundaries. The fusion inhibition observed upon deletion of OXPHOS related genes or upon removal of the entire mtDNA was similar to that observed upon introduction of point mutations in the mitochondrial ATP6 gene that are associated to neurogenic ataxia and retinitis pigmentosa (NARP) or to maternally inherited Leigh Syndrome (MILS) in humans. Our findings indicate that the consequences of mtDNA mutations may not be limited to OXPHOS defects but may also include alterations in mitochondrial fusion. Our results further imply that, in healthy cells, the dominant inhibition of fusion could mediate the exclusion of OXPHOS-deficient mitochondria from the network of functional, fusogenic mitochondria.  相似文献   

11.
Polymorphism of Human Mitochondrial DNA     
Bermisheva  M. A.  Viktorova  T. V.  Khusnutdinova  E. K. 《Russian Journal of Genetics》2003,39(8):849-859
To date, a large data set on the mitochondrial DNA (mtDNA) sequence variation in human populations has been accumulated. The use of direct sequencing of the main noncoding region of mtDNA along with the RFLP analysis provide performance of complex analysis of mtDNA polymorphism in human populations. This approach proved to be effective for obtaining molecular genetic portraits of the world populations, as well as for the elucidation of the human evolutionary history and past migrations.  相似文献   

12.
Biochemical Characterization of Pathogenic Mutations in Human Mitochondrial Methionyl-tRNA Formyltransferase     
Akesh Sinha  Caroline K?hrer  Michael H. W. Weber  Isao Masuda  Vamsi K. Mootha  Ya-Ming Hou  Uttam L. RajBhandary 《The Journal of biological chemistry》2014,289(47):32729-32741
N-Formylation of initiator methionyl-tRNA (Met-tRNAMet) by methionyl-tRNA formyltransferase (MTF) is important for translation initiation in bacteria, mitochondria, and chloroplasts. Unlike all other translation systems, the metazoan mitochondrial system is unique in using a single methionine tRNA (tRNAMet) for both initiation and elongation. A portion of Met-tRNAMet is formylated for initiation, whereas the remainder is used for elongation. Recently, we showed that compound heterozygous mutations within the nuclear gene encoding human mitochondrial MTF (mt-MTF) significantly reduced mitochondrial translation efficiency, leading to combined oxidative phosphorylation deficiency and Leigh syndrome in two unrelated patients. Patient P1 has a stop codon mutation in one of the MTF genes and an S209L mutation in the other MTF gene. P2 has a S125L mutation in one of the MTF genes and the same S209L mutation as P1 in the other MTF gene. Here, we have investigated the effect of mutations at Ser-125 and Ser-209 on activities of human mt-MTF and of the corresponding mutations, Ala-89 or Ala-172, respectively, on activities of Escherichia coli MTF. The S125L mutant has 653-fold lower activity, whereas the S209L mutant has 36-fold lower activity. Thus, both patients depend upon residual activity of the S209L mutant to support low levels of mitochondrial protein synthesis. We discuss the implications of these and other results for whether the effect of the S209L mutation on mitochondrial translational efficiency is due to reduced activity of the mutant mt-MTF and/or reduced levels of the mutant mt-MTF.  相似文献   

13.
Rewiring of Glutamine Metabolism Is a Bioenergetic Adaptation of Human Cells with Mitochondrial DNA Mutations     
Qiuying Chen  Kathryne Kirk  Yevgeniya I. Shurubor  Dazhi Zhao  Andrea J. Arreguin  Ifrah Shahi  Federica Valsecchi  Guido Primiano  Elizabeth L. Calder  Valerio Carelli  Travis T. Denton  M. Flint Beal  Steven S. Gross  Giovanni Manfredi  Marilena D&#x;Aurelio 《Cell metabolism》2018,27(5):1007-1025.e5
  相似文献   

14.
Chimpanzee and Human Mitochondrial DNA   总被引:1,自引:0,他引:1  
ROY D'ANDRADE  and PHILLIP A. MORIN 《American anthropologist》1996,98(2):352-370
  相似文献   

15.
Length Variation in Mitochondrial DNA of the Minnow Cyprinella Spiloptera   总被引:10,自引:1,他引:10       下载免费PDF全文
R. E. Broughton  T. E. Dowling 《Genetics》1994,138(1):179-190
Length differences in animal mitochondrial DNA (mtDNA) are common, frequently due to variation in copy number of direct tandem duplications. While such duplications appear to form without great difficulty in some taxonomic groups, they appear to be relatively short-lived, as typical duplication products are geographically restricted within species and infrequently shared among species. To better understand such length variation, we have studied a tandem and direct duplication of approximately 260 bp in the control region of the cyprinid fish, Cyprinella spiloptera. Restriction site analysis of 38 individuals was used to characterize population structure and the distribution of variation in repeat copy number. This revealed two length variants, including individuals with two or three copies of the repeat, and little geographic structure among populations. No standard length (single copy) genomes were found and heteroplasmy, a common feature of length variation in other taxa, was absent. Nucleotide sequence of tandem duplications and flanking regions localized duplication junctions in the phenylalanine tRNA and near the origin of replication. The locations of these junctions and the stability of folded repeat copies support the hypothesized importance of secondary structures in models of duplication formation.  相似文献   

16.
Mutations in FBXL4 Cause Mitochondrial Encephalopathy and a Disorder of Mitochondrial DNA Maintenance     
Penelope?E. Bonnen  John?W. Yarham  Arnaud Besse  Ping Wu  Eissa?A. Faqeih  Ali?Mohammad Al-Asmari  Mohammad?A.M. Saleh  Wafaa Eyaid  Alrukban Hadeel  Langping He  Frances Smith  Shu Yau  Eve?M. Simcox  Satomi Miwa  Taraka Donti  Khaled?K. Abu-Amero  Lee-Jun Wong  William?J. Craigen  Brett?H. Graham  Kenneth?L. Scott  Robert McFarland  Robert?W. Taylor 《American journal of human genetics》2013,93(3):471-481
  相似文献   

17.
Mutations in FBXL4 Cause Mitochondrial Encephalopathy and a Disorder of Mitochondrial DNA Maintenance     
Penelope?E. Bonnen  John?W. Yarham  Arnaud Besse  Ping Wu  Eissa?A. Faqeih  Ali?Mohammad Al-Asmari  Mohammad?A.M. Saleh  Wafaa Eyaid  Alrukban Hadeel  Langping He  Frances Smith  Shu Yau  Eve?M. Simcox  Satomi Miwa  Taraka Donti  Khaled?K. Abu-Amero  Lee-Jun Wong  William?J. Craigen  Brett?H. Graham  Kenneth?L. Scott  Robert McFarland  Robert?W. Taylor 《American journal of human genetics》2013,93(4):773
  相似文献   

18.
The Effect of the Nucleotide Context on Induction of Mutations in Hypervariable Segment 1 of Human Mitochondrial DNA     
Malyarchuk  B. A. 《Molecular Biology》2002,36(3):322-326
The distribution of unstable nucleotide positions with a higher frequency of homoplastic mutations was analyzed in hypervariable segment 1 (HVS1) of the major noncoding region of human mtDNA. Three motifs (GTAC, ACCC, CCTC) proved to be associated with a higher rate of point substitutions at unstable positions. The motifs were often arranged in direct, including tandem, repeats. Motifs CCTC and ACCC were found in extended poly(C) tracts, which form direct repeats associated with deletions and tandem duplications. The results suggested that the inconstancy of the human mitochondrial genome is to a great extent determined by context-dependent mutations.  相似文献   

19.
Mechanisms of Human Mitochondrial DNA Maintenance: The Determining Role of Primary Sequence and Length over Function          下载免费PDF全文
Carlos T. Moraes  Lesley Kenyon    Huiling Hao 《Molecular biology of the cell》1999,10(10):3345-3356
  相似文献   

20.
Analysis of Mutation Mechanisms in Human Mitochondrial DNA     
I. V. Kornienko  B. A. Malyarchuk 《Molecular Biology》2005,39(5):761-768
The cause of the high variability of human mitochondrial DNA (mtDNA) remains largely unknown. Three mechanisms of mutagenesis that might account for the generation of nucleotide substitutions in mtDNA have been analyzed: deamination of DNA nitrous bases caused by deamination agents, tautomeric proton migration in nitrous bases, and the hydrolysis of the glycoside bond between the nitrous base and carbohydrate residue in nucleotides against the background of the free-radical damage of DNA polymerase γ. Quantum chemical calculations demonstrated that the hydrolysis of the N-glycoside bond is the most probable mechanism; it is especially prominent in the H strand, which remains free during mtDNA replication for a relatively long time. It has also been found that hydrolytic deamination of adenine in single-stranded regions of the H strand is a possible cause of the high frequency of T → C transitions in the mutation spectra of the L-chain of the major mtDNA noncoding region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号