首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although ethylene is involved in the complex cross talk of signaling pathways regulating plant defense responses to microbial attack, its functions remain to be elucidated. The lesion mimic mutant vad1-1 (for vascular associated death), which exhibits the light-conditional appearance of propagative hypersensitive response-like lesions along the vascular system, is a good model for studying the role of ethylene in programmed cell death and defense. Here, we demonstrate that expression of genes associated with ethylene synthesis and signaling is enhanced in vad1-1 under lesion-promoting conditions and after plant-pathogen interaction. Analyses of the progeny from crosses between vad1-1 plants and either 35SERF1 transgenic plants or ein2-1, ein3-1, ein4-1, ctr1-1, or eto2-1 mutants revealed that the vad1-1 cell death and defense phenotypes are dependent on ethylene biosynthesis and signaling. In contrast, whereas vad1-1-dependent increased resistance was abolished by ein2, ein3, and ein4 mutations, positive regulation of ethylene biosynthesis (eto2-1) or ethylene responses (35SERF1) did not exacerbate this phenotype. In addition, VAD1 expression in response to a hypersensitive response-inducing bacterial pathogen is dependent on ethylene perception and signaling. These results, together with previous data, suggest that VAD1 could act as an integrative node in hormonal signaling, with ethylene acting in concert with salicylic acid as a positive regulator of cell death propagation.  相似文献   

2.
A novel Arabidopsis mutant has been identified with constitutive expression of GST1-GUS using plants with a pathogen-responsive reporter transgene containing the beta-glucuronidase (GUS) coding region driven by the GST1 promoter. The recessive mutant, called agd2 (aberrant growth and death2), has salicylic acid (SA)-dependent increased resistance to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae, elevated SA levels, a low level of spontaneous cell death, callose deposition, and enlarged cells in leaves. The enhanced resistance of agd2 to virulent P. syringae requires the SA signaling component NONEXPRESSOR OF PR1 (NPR1). However, agd2 renders the resistance response to P. syringae carrying avrRpt2 NPR1-independent. Thus agd2 affects both an SA- and NPR1-dependent general defense pathway and an SA-dependent, NPR1-independent pathway that is active during the recognition of avirulent P. syringae. agd2 plants also fail to show a hypersensitive cell death response (HR) unless NPR1 is removed. This novel function for NPR1 is also apparent in otherwise wild-type plants: npr1 mutants show a stronger HR, while NPR1-overproducing plants show a weaker HR when infected with P. syringae carrying the avrRpm1 gene. Spontaneous cell death in agd2 is partially suppressed by npr1, indicating that NPR1 can suppress or enhance cell death depending on the cellular context. agd2 plants depleted of SA show a dramatic exacerbation of the cell-growth phenotype and increased callose deposition, suggesting a role for SA in regulating growth and this cell-wall modification. AGD2 may function in cell death and/or growth control as well as the defense response, similarly to what has been described in animals for the functions of NFkappaB.  相似文献   

3.
To clarify the processes involved in plant immunity, we have isolated and characterized a single recessive Arabidopsis mutant, cad1 (constitutively activated cell death 1), which shows a phenotype that mimics the lesions seen in the hypersensitive response (HR). This mutant shows spontaneously activated expression of pathogenesis-related (PR) genes, and leading to a 32-fold increase in salicylic acid (SA). Inoculation of cad1 mutant plants with Pseudomonas syringae pv tomato DC3000 shows that the cad1 mutation results in the restriction of bacterial growth. Cloning of CAD1 reveals that this gene encodes a protein containing a domain with significant homology to the MACPF (membrane attack complex and perforin) domain of complement components and perforin proteins that are involved in innate immunity in animals. Furthermore, cell death is suppressed in transgenic cad1 plants expressing nahG, which encodes an SA-degrading enzyme. We therefore conclude that the CAD1 protein negatively controls the SA-mediated pathway of programmed cell death in plant immunity.  相似文献   

4.
Choi du S  Hwang BK 《The Plant cell》2011,23(2):823-842
Abscisic acid (ABA) is a key regulator of plant growth and development, as well as plant defense responses. A high-throughput in planta proteome screen identified the pepper (Capsicum annuum) GRAM (for glucosyltransferases, Rab-like GTPase activators, and myotubularins) domain-containing ABA-RESPONSIVE1 (ABR1), which is highly induced by infection with avirulent Xanthomonas campestris pv vesicatoria and also by treatment with ABA. The GRAM domain is essential for the cell death response and for the nuclear localization of ABR1. ABR1 is required for priming cell death and reactive oxygen species production, as well as ABA-salicylic acid (SA) antagonism. Silencing of ABR1 significantly compromised the hypersensitive response but enhanced bacterial pathogen growth and ABA levels in pepper. High levels of ABA in ABR1-silenced plants antagonized the SA levels induced by pathogen infection. Heterologous transgenic expression of ABR1 in Arabidopsis thaliana conferred enhanced resistance to Pseudomonas syringae pv tomato and Hyaloperonospora arabidopsidis infection. The susceptibility of the Arabidopsis ABR1 putative ortholog mutant, abr1, to these pathogens also supports the involvement of ABR1 in disease resistance. Together, these results reveal ABR1 as a novel negative regulator of ABA signaling and suggest that the nuclear ABR1 pool is essential for the cell death induction associated with ABA-SA antagonism.  相似文献   

5.
Tomato plants overexpressing the disease resistance gene Pto (35S::Pto) exhibit spontaneous cell death, accumulation of salicylic acid (SA), elevated expression of pathogenesis-related genes, and enhanced resistance to a broad range of pathogens. Because salicylate plays an important role in the cell death and defense activation in many lesion mimic mutants, we investigated the interaction of SA-mediated processes and the 35S::Pto-mediated defense pathway by introducing the nahG transgene that encodes salicylate hydroxylase. Here, we show that SA is not required for the 35S::Pto-activated microscopic cell death and plays a minor role in defense gene activation and general disease resistance in 35S::Pto plants. In contrast, temperature greatly affects the spontaneous cell death and general resistance in 35S::Pto plants, and high temperature inhibits the cell death. The NahG tomato plants develop spontaneous, unconstrained necrotic lesions on leaves. These lesions also are initiated by the inoculation of a virulent strain of Pseudomonas syringae pv. tomato. However, the NahG-dependent necrotic lesions are inhibited in the NahG/35S::Pto plants. This inhibition is most pronounced under conditions favoring the 35S::Pto-mediated spontaneous cell death development. These results indicate that the signaling pathways activated by Pto overexpression suppress the cellular damage that is caused by SA depletion. We also found that ethylene is dispensable for the 35S::Pto-mediated general defense.  相似文献   

6.
Greenberg JT  Silverman FP  Liang H 《Genetics》2000,156(1):341-350
Salicylic acid (SA) is required for resistance to many diseases in higher plants. SA-dependent cell death and defense-related responses have been correlated with disease resistance. The accelerated cell death 5 mutant of Arabidopsis provides additional genetic evidence that SA regulates cell death and defense-related responses. However, in acd5, these events are uncoupled from disease resistance. acd5 plants are more susceptible to Pseudomonas syringae early in development and show spontaneous SA accumulation, cell death, and defense-related markers later in development. In acd5 plants, cell death and defense-related responses are SA dependent but they do not confer disease resistance. Double mutants with acd5 and nonexpressor of PR1, in which SA signaling is partially blocked, show greatly attenuated cell death, indicating a role for NPR1 in controlling cell death. The hormone ethylene potentiates the effects of SA and is important for disease symptom development in Arabidopsis. Double mutants of acd5 and ethylene insensitive 2, in which ethylene signaling is blocked, show decreased cell death, supporting a role for ethylene in cell death control. We propose that acd5 plants mimic P. syringae-infected wild-type plants and that both SA and ethylene are normally involved in regulating cell death during some susceptible pathogen infections.  相似文献   

7.
8.
Wang GF  Seabolt S  Hamdoun S  Ng G  Park J  Lu H 《Plant physiology》2011,156(3):1508-1519
The salicylic acid (SA) regulatory gene HOPW1-1-INTERACTING3 (WIN3) was previously shown to confer resistance to the biotrophic pathogen Pseudomonas syringae. Here, we report that WIN3 controls broad-spectrum disease resistance to the necrotrophic pathogen Botrytis cinerea and contributes to basal defense induced by flg22, a 22-amino acid peptide derived from the conserved region of bacterial flagellin proteins. Genetic analysis indicates that WIN3 acts additively with several known SA regulators, including PHYTOALEXIN DEFICIENT4, NONEXPRESSOR OF PR GENES1 (NPR1), and SA INDUCTION-DEFICIENT2, in regulating SA accumulation, cell death, and/or disease resistance in the Arabidopsis (Arabidopsis thaliana) mutant acd6-1. Interestingly, expression of WIN3 is also dependent on these SA regulators and can be activated by cell death, suggesting that WIN3-mediated signaling is interconnected with those derived from other SA regulators and cell death. Surprisingly, we found that WIN3 and NPR1 synergistically affect flowering time via influencing the expression of flowering regulatory genes FLOWERING LOCUS C and FLOWERING LOCUS T. Taken together, our data reveal that WIN3 represents a novel node in the SA signaling networks to regulate plant defense and flowering time. They also highlight that plant innate immunity and development are closely connected processes, precise regulation of which should be important for the fitness of plants.  相似文献   

9.
Pathogenic strains of Pseudomonas syringae pv. tomato carrying the avrRpt2 avirulence gene specifically induce a hypersensitive cell death response in Arabidopsis plants that contain the complementary RPS2 disease resistance gene. Transient expression of avrRpt2 in Arabidopsis plants having the RPS2 gene has been shown to induce hypersensitive cell death. In order to analyze the effects of conditional expression of avrRpt2 in Arabidopsis plants, transgenic lines were constructed that contained the avrRpt2 gene under the control of a tightly regulated, glucocorticoid-inducible promoter. Dexamethasone-induced expression of avrRpt2 in transgenic lines having the RPS2 gene resulted in a specific hypersensitive cell death response that resembled a Pseudomonas syringae-induced hypersensitive response and also induced the expression of a pathogenesis-related gene (PR1). Interestingly, high level expression of avrRpt2 in a mutant rps2–101C background resulted in plant stress and ultimately cell death, suggesting a possible role for avrRpt2 in Pseudomonas syringae virulence. Transgenic RPS2 and rps2 plants that contain the glucocorticoid-inducible avrRpt2 gene will provide a powerful new tool for the genetic, physiological, biochemical, and molecular dissection of an avirulence gene-specified cell death response in both resistant and susceptible plants.  相似文献   

10.
Although extensive data has described the key role of salicylic acid (SA) in signaling pathogen-induced disease resistance, its function in physiological processes related to cell death is still poorly understood. Recent studies have explored the requirement of SA for mounting the hypersensitive response (HR) against an invading pathogen, where a particular cell death process is activated at the site of attempted infection causing a confined lesion. Biochemical data suggest that SA potentiates the signal pathway for HR by affecting an early phosphorylation-sensitive step preceding the generation of pro-death signals, including those derived from the oxidative burst. Accordingly, the epistatic relationship between cell death and SA accumulation, analyzed in crosses between lesion-mimic mutants (spontaneous lesion formation) and the transgenic nahG line (depleted in SA) places the SA activity in a feedback loop downstream and upstream of cell death. Exciting advances have been made in the identification of cellular protective functions and cell death suppressors that might operate in HR. Moreover, the spatio-temporal patterns of the SA accumulation (non-homogeneous distribution, biphasic kinetics) described in some HR lesions, may also reveal important clues for unraveling the complex cellular network that tightly balances pro- and anti-death functions in the hypersensitive cell death.  相似文献   

11.
Defence against pathogens in Arabidopsis is orchestrated by at least three signalling molecules: salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). The hrl1 (hypersensitive response-like lesions 1) mutant of Arabidopsis is characterized by spontaneous necrotic lesions, accumulation of reactive oxygen species, constitutive expression of SA- and ET/JA-responsive defence genes, and enhanced resistance to virulent bacterial and oomycete pathogens. Epistasis analyses of hrl1 with npr1, etr1, coi1 and SA-depleted nahG plants revealed novel interactions between SA and ET/JA signalling pathways in regulating defence gene expression and cell death. RNA gel-blot analysis of RNA isolated separately from the lesion+ and the lesion- leaves of double mutants of hrl1 revealed different signalling requirements for the expression of defence genes in these tissues. Expression of the ET/JA-responsive PDF1.2 gene was markedly reduced in hrl1 npr1 and in SA-depleted hrl1 nahG plants. In hrl1 nahG plants, expression of PDF1.2 was regulated by benzathiadiazole in a concentration-dependent manner: induced at low concentration and suppressed at high concentration. The hrl1 etr1 plants lacked systemic PR-1 expression, and exhibited compromised resistance to virulent Pseudomonas syringae and Peronospora parasitica. Inhibiting JA responses in hrl1 coi1 plants lead to exaggerated cell death and severe stunting of plants. Finally, the hrl1 mutation lead to elevated expression of AtrbohD, which encodes a major subunit of the NADPH oxidase complex. Our results indicate that defence gene expression and resistance against pathogens in hrl1 is regulated synergistically by SA and ET/JA defence pathways.  相似文献   

12.
We describe the characterization of a novel gain-of-function Arabidopsis mutant, dll1 (disease-like lesions1), which spontaneously develops lesions mimicking bacterial speck disease and constitutively expresses biochemical and molecular markers associated with pathogen infection. Despite the constitutive expression of defense-related responses, dll1 is unable to suppress the growth of virulent pathogens. However, dll1 elicits normal hypersensitive response in response to avirulent pathogens, thus indicating that dll1 is not defective in the induction of normal resistance responses. The lesion+ leaves of dll1 support the growth of hrcC mutant of Pseudomonas syringae, which is defective in the transfer of virulence factors into the plant cells, and therefore non-pathogenic to wild-type Col-0 plants. This suggests that dll1 intrinsically expresses many of the cellular processes that are required for pathogen growth during disease. Epistasis analyses reveal that salicylic acid and NPR1 are required for lesion formation, while ethylene modulates lesion development in dll1, suggesting that significant overlap exist between the signalling pathways leading to resistance- and disease-associated cell death. Our results suggest that host cell death during compatible interactions, at least in part, is genetically controlled by the plant and DLL1 may positively regulate this process.  相似文献   

13.
Lu H  Rate DN  Song JT  Greenberg JT 《The Plant cell》2003,15(10):2408-2420
The previously reported Arabidopsis dominant gain-of-function mutant accelerated cell death6-1 (acd6-1) shows spontaneous cell death and increased disease resistance. acd6-1 also confers increased responsiveness to the major defense signal salicylic acid (SA). To further explore the role of ACD6 in the defense response, we cloned and characterized the gene. ACD6 encodes a novel protein with putative ankyrin and transmembrane regions. It is a member of one of the largest uncharacterized gene families in higher plants. Steady state basal expression of ACD6 mRNA required light, SA, and an intact SA signaling pathway. Additionally, ACD6 mRNA levels were increased in the systemic, uninfected tissue of Pseudomonas syringae-infected plants as well as in plants treated with the SA agonist benzothiazole (BTH). A newly isolated ACD6 loss-of-function mutant was less responsive to BTH and upon P. syringae infection had reduced SA levels and increased susceptibility. Conversely, plants overexpressing ACD6 showed modestly increased SA levels, increased resistance to P. syringae, and BTH-inducible and/or a low level of spontaneous cell death. Thus, ACD6 is a necessary and dose-dependent activator of the defense response against virulent bacteria and can activate SA-dependent cell death.  相似文献   

14.
The hypersensitive response (HR) in plants is a programmed cell death that is commonly associated with disease resistance. A novel mutation in Arabidopsis, hlm1, which causes aberrant regulation of cell death, manifested by a lesion-mimic phenotype and an altered HR, segregated as a single recessive allele. Broad-spectrum defense mechanisms remained functional or were constitutive in the mutant plants, which also exhibited increased resistance to a virulent strain of Pseudomonas syringae pv tomato. In response to avirulent strains of the same pathogen, the hlm1 mutant showed differential abilities to restrict bacterial growth, depending on the avirulence gene expressed by the pathogen. The HLM1 gene encodes a cyclic nucleotide-gated channel, CNGC4. Preliminary study of the HLM1/CNGC4 gene pro-duct in Xenopus oocytes (inside-out patch-clamp technique) showed that CNGC4 is permeable to both K(+) and Na(+) and is activated by both cGMP and cAMP. HLM1 gene expression is induced in response to pathogen infection and some pathogen-related signals. Thus, HLM1 might constitute a common downstream component of the signaling pathways leading to HR/resistance.  相似文献   

15.
The Pca crown rust resistance cluster in the diploid Avena genus confers gene-for-gene specificity to numerous isolates of Puccinia coronata f. sp. avenae. Recombination breakpoint analysis indicates that specificities conferred by the Pca cluster are controlled by at least five distinct genes, designated Pc81, Pc82, Pc83, Pc84, and Pc85. Avena plants with the appropriate genotype frequently respond to P. coronata by undergoing hypersensitive cell death at the sites of fungal infection. Autofluorescence of host cells in response to P. coronata occurs in plants that develop visible necrotic lesions but not in plants that lack this phenotype. Two newly described, non-Pc loci were shown to control hypersensitive cell death. Rds (resistance-dependent suppressor of cell death) suppresses the hypersensitive response (HR), but not the resistance, mediated by the Pc82 resistance gene. In contrast, Rih (resistance-independent hypersensitive cell death) confers HR in both resistant and susceptible plants. Linkage analysis indicates that Rds is unlinked to the Pca cluster, whereas Rih is tightly linked to it. These results indicate that multiple synchronous pathways affect the development of hypersensitive cell death and that HR is not essential for resistance to crown rust. Further characterization of these genes will clarify the relationship between plant disease resistance and localized hypersensitive cell death.  相似文献   

16.
Ethylene is known to influence plant defense responses including cell death in response to both biotic and abiotic stress factors. However, whether ethylene acts alone or in conjunction with other signaling pathways is not clearly understood. Ethylene overproducer mutants, eto1 and eto3, produced high levels of ethylene and developed necrotic lesions in response to an acute O3 exposure that does not induce lesions in O3-tolerant wild-type Col-0 plants. Treatment of plants with ethylene inhibitors completely blocked O3-induced ethylene production and partially attenuated O3-induced cell death. Analyses of the responses of molecular markers of specific signaling pathways indicated a relationship between salicylic acid (SA)- and ethylene-signaling pathways and O3 sensitivity. Both eto1 and eto3 plants constitutively accumulated threefold higher levels of total SA and exhibited a rapid increase in free SA and ethylene levels prior to lesion formation in response to O3 exposure. SA pre-treatments increased O3 sensitivity of Col-0, suggesting that constitutive high SA levels prime leaf tissue to exhibit increased magnitude of O3-induced cell death. NahG and npr1 plants compromised in SA signaling failed to produce ethylene in response to O3 and other stress factors suggesting that SA is required for stress-induced ethylene production. Furthermore, NahG expression in the dominant eto3 mutant attenuated ethylene-dependent PR4 expression and rescued the O3-induced HR (hypersensitive response) cell death phenotype exhibited by eto3 plants. Our results suggest that both SA and ethylene act in concert to influence cell death in O3-sensitive genotypes, and that O3-induced ethylene production is dependent on SA.  相似文献   

17.
Mitogen-activated protein (MAP) kinase cascades are fundamental components of the signaling pathways associated with plant immunity. Despite the large number of MAP kinase kinase kinases (MAPKKK) encoded in the plant genome, only very few of them have an assigned function. Here, we identified MAPKKK gene of tomato (Solanum lycopersicum), SIMAPKKKε, which is required for hypersensitive response cell death and disease resistance against Gram-negative bacterial pathogens. Silencing of SIMAPKKKε compromised tomato resistance to Xanthomonas campestris and Pseudomonas syringae strains, resulting in the appearance of disease symptoms and enhanced bacterial growth. In addition, silencing of NbMAPKKKε in Nicotiana benthamiana plants significantly inhibited the cell death triggered by expression of different R gene/effector gene pairs. Conversely, overexpression of either the full-length SIMAPKKKε gene or its kinase domain in N. benthamiana leaves caused pathogen-independent activation of cell death that required an intact kinase catalytic domain. Moreover, by suppressing the expression of various MAPKK and MAPK genes and overexpressing the SIMAPKKKε kinase domain, we identified a signaling cascade acting downstream of SIMAPKKKε that includes MEK2, WIPK and SIPK. Additional epistasis experiments revealed that SIPKK functions as a negative regulator of SIMAPKKKε-mediated cell death. Our results provide evidence that SIMAPKKKε is a signaling molecule that positively regulates cell death networks associated with plant immunity.  相似文献   

18.
Many plant pathogens cause disease symptoms that manifest over days as regions of localized cell death. Localized cell death (the hypersensitive response; HR) also occurs in disease-resistant plants, but this response appears within hours of attempted infection and may restrict further pathogen growth. We identified a MAP kinase kinase kinase gene (MAPKKKalpha) that is required for the HR and resistance against Pseudomonas syringae. Significantly, we found that MAPKKKalpha also regulates cell death in susceptible leaves undergoing P. syringae infection. Overexpression of MAPKKKalpha in leaves activated MAPKs and caused pathogen-independent cell death. By overexpressing MAPKKKalpha in leaves and suppressing expression of various MAPKK and MAPK genes by virus-induced gene silencing, we identified two distinct MAPK cascades that act downstream of MAPKKKalpha. These results demonstrate that signal transduction pathways associated with both plant immunity and disease susceptibility share a common molecular switch.  相似文献   

19.
The role of salicylic acid (SA) in events occurring before cell death during the hypersensitive reaction (HR) was investigated in leaves of wild-type tobacco Samsun NN and in transgenic lines expressing salicylate hydroxylase (35S-SH-L). Challenge of 35S-SH-L tobacco with avirulent strains of Pseudomonas syringae gave rise to symptoms resembling those normally associated with a compatible response to virulent strains in terms of visible phenotype, kinetics of bacterial multiplication, and escape from the infection site. Compared with responses in wild-type tobacco, both the onset of plant cell death and the induction of an active oxygen species-responsive promoter (AoPR1-GUS) were delayed following challenge of 35S-SH-L plants with avirulent bacteria. The oxidative burst occurring after challenge with avirulent bacteria was visualized histochemically and quantified in situ. H2O2 accumulation at reaction sites was evident within 1 h after inoculation in wild-type tobacco, whereas in 35S-SH-L plants the onset of H2O2 accumulation was delayed by 2-3 h. The delay in H2O2 generation was correlated with a reduction in the transient rise in SA that usually occurred within 1-2 h following inoculation in wild-type plants. Our data indicate that an early transient rise in SA potentiates the oxidative burst, with resultant effects on accumulation of H2O2, plant cell death and also defence-gene induction, factors that together may determine the outcome of plant-pathogen interactions.  相似文献   

20.
Arabidopsis dnd1 and dnd2 mutants lack cyclic nucleotide-gated ion channel proteins and carry out avirulence or resistance gene-mediated defense with a greatly reduced hypersensitive response (HR). They also exhibit elevated broad-spectrum disease resistance and constitutively elevated salicylic acid (SA) levels. We examined the contributions of NPR1, SID2 (EDS16), NDR1, and EIN2 to dnd phenotypes. Mutations that affect SA accumulation or signaling (sid2, npr1, and ndr1) abolished the enhanced resistance of dnd mutants against Pseudomonas syringae pv. tomato and Hyaloperonospora parasitica but not Botrytis cinerea. When SA-associated pathways were disrupted, the constitutive activation of NPR1-dependent and NPR1-independent and SA-dependent pathways was redirected toward PDF1.2-associated pathways. This PDF1.2 overexpression was downregulated after infection by P. syringae. Disruption of ethylene signaling abolished the enhanced resistance to B. cinerea but not P. syringae or H. parasitica. However, loss of NPR1, SID2, NDR1, or EIN2 did not detectably alter the reduced HR in dnd mutants. The susceptibility of dnd ein2 plants to B. cinerea despite their reduced-HR phenotype suggests that cell death repression is not the primary cause of dnd resistance to necrotrophic pathogens. The partial restoration of resistance to B. cinerea in dnd1 npr1 ein2 triple mutants indicated that this resistance is not entirely EIN2 dependent. The above findings indicate that the broad-spectrum resistance of dnd mutants occurs due to activation or sensitization of multiple defense pathways, yet none of the investigated pathways are required for the reduced-HR phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号