首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
M A Arbing  J W Hanrahan  J W Coulton 《Biochemistry》2001,40(48):14621-14628
Porin (341 amino acids; M(r) 37 782) of Haemophilus influenzae type b mediates exchange of solutes between the external environment and the periplasm of this Gram-negative bacterium. Positively charged residues in the extracellular loops have been shown to be involved in the voltage gating of this protein. To further elucidate our observations on the functional properties of this channel, we mutated seven lysines (Lys(48), Lys(161), Lys(165), Lys(170), Lys(248), Lys(250), and Lys(253)) to glutamic acid. The selected residues were previously shown to be accessible to chemical modification, and they map to three locations: loop 4 and loop 6, and within the barrel lumen. The seven mutant proteins were purified, and each was reconstituted into planar lipid bilayers to characterize its channel forming properties. The single substitution mutant porins displayed increased single channel conductances in 1 M KCl ranging between 134 and 178% of the single channel conductance for wild-type Hib porin. Six of the seven mutant porins also displayed altered current-voltage relationships when compared to wild-type Hib porin. Whereas Lys(170)Glu had activity similar to wild-type Hib porin, Lys(48)Glu, Lys(248)Glu, and Lys(253)Glu showed substantial voltage gating at both positive and negative polarities. Lys(161)Glu and Lys(250)Glu gated only at negative potentials, and Lys(165)Glu gated only at positive potentials. Rather than ascribing one specific loop in gating, our analyses of these mutant Hib porins suggest that voltage gating can be attributed to contributions from loops 4 and 6 and a residue within the barrel lumen.  相似文献   

2.
The human Rad51 protein, a eukaryotic ortholog of the bacterial RecA protein, is a key enzyme that functions in homologous recombination and recombinational repair of double strand breaks. The Rad51 protein contains two flexible loops, L1 and L2, which are proposed to be sites for DNA binding, based on a structural comparison with RecA. In the present study, we performed mutational and fluorescent spectroscopic analyses on the L1 and L2 loops to examine their role in DNA binding. Gel retardation and DNA-dependent ATP hydrolysis measurements revealed that the substitution of the tyrosine residue at position 232 (Tyr232) within the L1 loop with alanine, a short side chain amino acid, significantly decreased the DNA-binding ability of human Rad51, without affecting the protein folding or the salt-induced, DNA-independent ATP hydrolysis. Even the conservative replacement with tryptophan affected the DNA binding, indicating that Tyr232 is involved in DNA binding. The importance of the L1 loop was confirmed by the fluorescence change of a tryptophan residue, replacing the Asp231, Ser233, or Gly236 residue, upon DNA binding. The alanine replacement of phenylalanine at position 279 (Phe279) within the L2 loop did not affect the DNA-binding ability of human Rad51, unlike the Phe203 mutation of the RecA L2 loop. The Phe279 side chain may not be directly involved in the interaction with DNA. However, the fluorescence intensity of the tryptophan replacing the Rad51-Phe279 residue was strongly reduced upon DNA binding, indicating that the L2 loop is also close to the DNA-binding site.  相似文献   

3.
Ribosomal protein L5, a 5S rRNA binding protein in the large subunit, is composed of a five-stranded antiparallel beta-sheet and four alpha-helices, and folds in a way that is topologically similar to the ribonucleprotein (RNP) domain [Nakashima et al., RNA 7, 692-701, 20011. The crystal structure of ribosomal protein L5 (BstL5) from Bacillus stearothermophilus suggests that a concave surface formed by an anti-parallel beta-sheet and long loop structures are strongly involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurred at beta-strands and loop structures in BstL5. The mutation of Lys33 at the beta 1-strand caused a significant reduction in 5S rRNA binding. In addition, the Arg92, Phe122, and Glu134 mutations on the beta2-strand, the alpha3-beta4 loop, and the beta4-beta5 loop, respectively, resulted in a moderate decrease in the 5S rRNA binding affinity. In contrast, mutation of the conserved residue Pro65 at the beta2-strand had little effect on the 5S rRNA binding activity. These results, taken together with previous results, identified Lys33, Asn37, Gln63, and Thr90 on the beta-sheet structure, and Phe77 at the beta2-beta3 loop as critical residues for the 5S rRNA binding. The contribution of these amino acids to 5S rRNA binding was further quantitatively evaluated by surface plasmon resonance (SPR) analysis by the use of BIAcore. The results showed that the amino acids on the beta-sheet structure are required to decrease the dissociation rate constant for the BstL5-5S rRNA complex, while those on the loops are to increase the association rate constant for the BstL5-5S rRNA interaction.  相似文献   

4.
Mutations in ribosomal proteins L4 and L22 confer resistance to erythromycin and other macrolide antibiotics in a variety of bacteria. L4 and L22 have elongated loops whose tips converge in the peptide exit tunnel near the macrolide-binding site, and resistance mutations typically affect residues within these loops. Here, we used bacteriophage λ Red-mediated recombination, or “recombineering,” to uncover new L4 and L22 alleles that confer macrolide resistance in Escherichia coli. We randomized residues at the tips of the L4 and L22 loops using recombineered oligonucleotide libraries and selected the mutagenized cells for erythromycin-resistant mutants. These experiments led to the identification of 341 resistance mutations encoding 278 unique L4 and L22 proteins—the overwhelming majority of which are novel. Many resistance mutations were complex, involving multiple missense mutations, in-frame deletions, and insertions. Transfer of L4 and L22 mutations into wild-type cells by phage P1-mediated transduction demonstrated that each allele was sufficient to confer macrolide resistance. Although L4 and L22 mutants are typically resistant to most macrolides, selections carried out on different antibiotics revealed macrolide-specific resistance mutations. L22 Lys90Trp is one such allele that confers resistance to erythromycin but not to tylosin and spiramycin. Purified L22 Lys90Trp ribosomes show reduced erythromycin binding but have the same affinity for tylosin as wild-type ribosomes. Moreover, dimethyl sulfate methylation protection assays demonstrated that L22 Lys90Trp ribosomes bind tylosin more readily than erythromycin in vivo. This work underscores the exceptional functional plasticity of the L4 and L22 proteins and highlights the utility of Red-mediated recombination in targeted genetic selections.  相似文献   

5.
Three cytoplasmic loops in the G protein-coupled receptor rhodopsin, C2, C3, and C4, have been implicated as key sites for binding and activation of the visual G protein transducin. Non-helical portions of the C2- and C3-loops and the cytoplasmic helix-8 from the C4 loop were targeted for a "gain-of-function" mutagenesis to identify rhodopsin residues critical for transducin activation. Mutant opsins with residues 140-148 (C2-loop), 229-244 (C3-loop), or 310-320 (C4-loop) substituted by poly-Ala sequences of equivalent lengths served as templates for mutagenesis. The template mutants with poly-Ala substitutions in the C2- and C3-loops formed the 500-nm absorbing pigments but failed to activate transducin. Reverse substitutions of the Ala residues by rhodopsin residues have been generated in each of the templates. Significant ( approximately 50%) restoration of the rhodopsin/transducin coupling was achieved with re-introduction of residues Cys140/Lys141 and Arg147/Phe148 into the C2 template. The reverse substitutions of the C3-loop residues Thr229/Val230 and Ser240/Thr242/Thr243/Gln244 produced a pigment with a full capacity for transducin activation. The C4 template mutant was unable to bind 11-cis-retinal, and the presence of Asn310/Lys311 was required for correct folding of the protein. Subsequent mutagenesis of the C4-loop revealed the role of Phe313 and Met317. On the background of Asn310/Lys311, the inclusion of Phe313 and Met317 produced a mutant pigment with the potency of transducin activation equal to that of the wild-type rhodopsin. Overall, our data support the role of the three cytoplasmic loops of rhodopsin and suggest that residues adjacent to the transmembrane helices are most important for transducin activation.  相似文献   

6.
Nayak SK  Bagga S  Gaur D  Nair DT  Salunke DM  Batra JK 《Biochemistry》2001,40(31):9115-9124
Restrictocin, a member of the fungal ribotoxin family, specifically cleaves a single phosphodiester bond in the 28S rRNA and potently inhibits eukaryotic protein synthesis. Residues Tyr47, His49, Glu95, Phe96, Pro97, Arg120, and His136 have been predicted to form the active site of restrictocin. In this study, we have individually mutated these amino acids to alanine to probe their role in restrictocin structure and function. The role of Tyr47, His49, Arg120, and His136 was further investigated by making additional mutants. Mutating Arg120 or His136 to alanine or the other amino acids rendered the toxin completely inactive, whereas mutating Glu95 to alanine only partially inactivated the toxin. Mutation of Phe96 and Pro97 to Ala had no effect on the activity of restrictocin. The Tyr47 to alanine mutant was inactive in inhibiting protein synthesis, and had a nonspecific ribonuclease activity on 28S rRNA similar to that shown previously for the His49 to Ala mutant. Unlike the His136 to Ala mutant, the double mutants containing Tyr47 or His49 mutated to alanine along with His136 did not compete with restrictocin to cause a significant reduction in the extent of cleavage of 28S rRNA. In a model of restrictocin and a 29-mer RNA substrate complex, residues Tyr47, His49, Glu95, Arg120, and His136 were found to be near the cleavage site on RNA. It is proposed that in restrictocin Glu95 and His136 are directly involved in catalysis, Arg120 is involved in the stabilization of the enzyme-substrate complex, Tyr47 provides structural stability to the active site, and His49 determines the substrate specificity.  相似文献   

7.
Various apoptotic signals can activate caspases 3 and 7 by triggering the L2 loop cleavage of their proenzymes. These two enzymes have highly similar structures and functions, and serve as apoptotic executioners. The structures of caspase 7 and procaspase 7 differ significantly in the conformation of the loops constituting the active site, indicating that the enzyme undergoes a large structural change during activation. To define the role of the leucine residue on the L2 loop, which shows the largest movement during enzyme activation but has not yet been studied, Leu168 of caspase 3 and Leu191 of caspase 7 were mutated. Kinetic analysis indicated that the mutation of the leucine residues sometimes improved the Km but also greatly decreased the kcat, resulting in an overall decrease in enzyme activity. The tryptophan fluorescence change at excitation/emission = 280/350 nm upon L2-L2' loop cleavage was found to be higher in catalytically active mutants, including the corresponding wild-type caspase, than in the inactive mutants. The crystal structures of the caspase 3 mutants were solved and compared with that of wild-type. Significant alterations in the conformations of the L1 and L4 loops were found. These results indicate that the leucine residue on the L2 loop has an important role in maintaining the catalytic activity of caspases 3 and 7.  相似文献   

8.
We examine the role of the conformational restriction imposed by constrained ends of a protein loop on the determination of a strained loop conformation. The Lys 116-Pro 117 peptide bond of staphylococcal nuclease A exists in equilibrium between the cis and trans isomers. The folded protein favors the strained cis isomer with an occupancy of 90%. This peptide bond is contained in a solvent-exposed, flexible loop of residues 112-117 whose ends are anchored by Val 111 and Asn 118. Asn 118 is constrained by 2 side-chain hydrogen bonds. We investigate the importance of this constraint by replacing Asn 118 with aspartate, alanine, and glycine. We found that removing 1 or more of the hydrogen bonds observed in Asn 118 stabilizes the trans configuration over the cis configuration. By protonating the Asp 118 side chain of N118D through decreased pH, the hydrogen bonding character of Asp 118 approached that of Asn 118 in nuclease A, and the cis configuration was stabilized relative to the trans configuration. These data suggest that the rigid anchoring of the loop end is important in establishing the strained cis conformation. The segment of residues 112-117 in nuclease A provides a promising model system for study of the basic principles that determine polypeptide conformations. Such studies could be useful in the rational design or redesign of protein molecules.  相似文献   

9.
Ribotoxins are a family of potent cytotoxic proteins from Aspergillus whose members display a high sequence identity (85% for about 150 amino acid residues). The three-dimensional structures of two of these proteins, alpha-sarcin and restrictocin, are known. They interact with phospholipid bilayers, according to their ability to enter cells, and cleave a specific phosphodiester bond in the large subunit of ribosome thus inhibiting protein biosynthesis. Two nonconservative sequence changes between these proteins are located at the amino-terminal beta-hairpin of alpha-sarcin, a characteristic structure that is absent in other nontoxic structurally related microbial RNases. These two residues of alpha-sarcin, Lys 11 and Thr 20, have been substituted with the equivalent amino acids in restrictocin. The single mutants (K11L and T20D) and the corresponding K11L/T20D double mutant have been produced in Escherichia coli and purified to homogeneity. The spectroscopic characterization of the purified proteins reveals that the overall native structure is preserved. The ribonuclease and lipid-perturbing activities of the three mutants and restrictocin have been evaluated and compared with those of alpha-sarcin. These proteins exhibit the same ability to specifically inactivate ribosomes, although they show different activity against nonspecific substrate analogs such as poly(A). The mutant variant K11L and restrictocin display a lower phospholipid-interacting ability correlated with a decreased cytotoxicity. The results obtained are interpreted in terms of the involvement of the amino-terminal beta-hairpin in the interaction with both membranes and polyadenylic acid.  相似文献   

10.
The structure of the unactivated form of ribulose-1,5-bisphosphate carboxylase/oxygenase was refined at a resolution of 2.0 A to an R-factor of 17.1%. The previous model (Chapman et al., 1988) was extensively rebuilt, and the small subunit was retraced. The refined model consists of residues 22-63 and 69-467 of the large subunit and the complete small subunit. A striking feature of the model is that several loops have very high B-factors, probably representing mobile regions of the molecule. An examination of the intersubunit contacts shows that the L8S8 hexadecamer is composed of four L2 dimers. The dominant contacts between these L2 dimers are formed by the small subunits. This suggests that the small subunits may be essential for maintaining the integrity of the L8S8 structure. The active site shows differences between the unactivated form and the quaternary complex. In particular, Lys334 has moved out of the active site by about 10A. This residue lies on loop 6 of the alpha beta barrel, which is a particularly mobile loop. The site of ribulose-1,5-bisphosphate carboxylase/oxygenase activation is well ordered in the absence of the carbamylation of Lys201 and Mg2+ binding. The residues are held poised by a network of hydrogen bonds. In the unactivated state, the active site is accessible to substrate binding.  相似文献   

11.
Protein folding is dependent on the formation and persistence of simple loops during the earliest events of the folding process. Ease of loop formation and persistence is believed to be dependent on the steric properties of the residues involved in loop formation. We have investigated this conformational factor in the denatured state of iso-1-cytchrome c using a five alanine insert in front of a unique histidine in the N-terminal region of the protein. The alanine residues have then been progressively substituted with sterically less-constrained glycine residues. Guanidine-HCl unfolding shows that all variants have a free energy of unfolding of approximately 2 kcal/mol. The low stability of these variants is well accounted for by stabilization of the denatured state by histidine-heme loop formation. The stability of the 22 residue histidine-heme loop has been measured in 3 M guanidine hydrochloride for all variants. Surprisingly, relative to alanine, glycine has only a very modest effect on equilibrium loop stability. Thus, the greater flexibility that glycine confers on the main-chain provides no advantage in terms of the persistence of simple loops early in folding. The underlying basis for the similar behavior of loops with polyalanine versus polyglycine inserts is discussed in terms of the current knowledge of the structure and loop formation kinetics of glycine versus alanine-rich peptides.  相似文献   

12.
A mutant of bovine pancreatic trypsin inhibitor (BPTI) has been constructed and expressed in Escherichia coli in order to probe the kinetic and structural consequences of truncating the binding loop residues to alanine. In addition to two such mutations (Thr11Ala and Pro13Ala), it has a conservative Lys15Arg substitution at position P(1) and an unrelated Met52Leu change. In spite of the binding loop modification, the affinity for trypsin is only 30 times lower than that of the wild-type protein. At pH 7.5 the protein can be crystallized on the time-scale of hours, yielding very stable crystals of a new (tetragonal) form of BPTI. Conventional source X-ray data collected to 1.4 A at room temperature allowed anisotropic structure refinement characterized by R=0.1048. The structure reveals all 58 residues, including the complete C terminus, which is in a salt-bridge contact with the N terminus. The Cys14-Cys38 disulfide bridge is observed in two distinct chiralities. This bridge, together with an internal water molecule, contributes to the stabilization of the binding loop. The Ala mutations have only an insignificant and localized effect on the binding loop, which retains its wild-type conformation (maximum deviation of loop C(alpha) atoms of 0.7 A at Ala13). Four (instead of the typical three) additional water molecules are buried in an internal cleft and connected to the surface via a sulfate anion. Three more SO(4)(2-) anions are seen in the electron density, one of them located on a 2-fold axis. It participates in the formation of a dimeric structure between symmetry-related BPTI molecules, in which electrostatic and hydrogen bonding interactions resulting from the mutated Lys15Arg substitution are of central importance. This dimeric interaction involves direct recognition loop-recognition loop contacts, part of which are hydrophobic interactions of the patches created by the alanine mutations. Another 2-fold symmetric interaction between the BPTI molecules involves the formation of an antiparallel intermolecular beta-sheet that, together with the adjacent intramolecular beta-hairpin loops, creates a four-stranded structure.  相似文献   

13.
The high affinity receptor for IgE (FcepsilonRI) plays an integral role in triggering IgE-mediated hypersensitivity reactions. The IgE-interactive site of human FcepsilonRI has previously been broadly mapped to several large regions in the second extracellular domain (D2) of the alpha-subunit (FcepsilonRIalpha). In this study, the IgE binding site of human FcepsilonRIalpha has been further localized to subregions of D2, and key residues putatively involved in the interaction with IgE have been identified. Chimeric receptors generated between FcepsilonRIalpha and the functionally distinct but structurally homologous low affinity receptor for IgG (FcgammaRIIa) have been used to localize two IgE binding regions of FcepsilonRIalpha to amino acid segments Tyr129-His134 and Lys154-Glu161. Both regions were capable of independently binding IgE upon placement into FcgammaRIIa. Molecular modeling of the three-dimensional structure of FcepsilonRIalpha-D2 has suggested that these binding regions correspond to the "exposed" C'-E and F-G loop regions at the membrane distal portion of the domain. A systematic site-directed mutagenesis strategy, whereby each residue in the Tyr129-His134 and Lys154-Glu161 regions of FcepsilonRIalpha was replaced with alanine, has identified key residues putatively involved in the interaction with IgE. Substitution of Tyr131, Glu132, Val155, and Asp159 decreased the binding of IgE, whereas substitution of Trp130, Trp156, Tyr160, and Glu161 increased binding. In addition, mutagenesis of residues Trp113, Val115, and Tyr116 in the B-C loop region, which lies adjacent to the C'-E and F-G loops, has suggested Trp113 also contributes to IgE binding, since the substitution of this residue with alanine dramatically reduces binding. This information should prove valuable in the design of strategies to intervene in the FcepsilonRIalpha-IgE interaction for the possible treatment of IgE-mediated allergic disease.  相似文献   

14.
Restrictocin is a 149 amino acid ribonucleolytic toxin produced by the fungus Aspergillus, which specifically cleaves a single phosphodiester bond within 28S rRNA resulting in a potent inhibition of protein synthesis in eukaryotic cells. Restrictocin has 12 prolines out of which three at positions 48, 112, and 126 are cis. Prolines at position 112, 118, and 126 were individually mutated to alanine to investigate their role in the catalytic and membrane interaction activity of restrictocin. All mutants were expressed in Escherichia coli, and recombinant proteins purified to homogeneity. Mutation of P112 resulted in a remarkable 50- and 100-fold reduction, respectively, in the ribonucleolytic and cytotoxic activities of restrictocin, whereas the interaction of P112A with phospholipid membranes increased. Mutants P118A and P126A exhibited 3-5-fold decreased ribonucleolytic and cytotoxic activities, however, their membrane interaction activity was marginally reduced compared to restrictocin. The study demonstrates that P112 is absolutely essential to maintain the functionally active conformation of restrictocin. Also, prolines 112, 118, and 126 do not appear to be directly involved in the membrane interaction activity of restrictocin.  相似文献   

15.
Natural Tet repressor (TetR) variants are alpha-helical proteins bearing a large loop between helices 8 and 9, which is variable in sequence and length. We have deleted this loop consisting of 14 amino acid residues in TetR(D) and rebuilt it stepwise with up to 42 alanine residues. All except the mutant with the longest alanine loop show wild-type repression, but none is inducible with tetracycline. This demonstrates the importance of the alpha8-alpha9 loop and its amino acid sequence for induction. The induction efficiencies increase with loop length, when the more tightly binding inducer anhydrotetracycline is used. The largest increase of inducibility was observed for TetR mutants with loop lengths between eight and 17 alanine residues. Since loop residues Asp/Glu157 and Arg158 are conserved in the natural TetR sequence variants, we constructed a mutant in which all other residues of the loop were replaced by alanine. This mutant exhibits increased anhydrotetracycline induction compared to the corresponding alanine variant. Thus, these residues are important for induction. Binding constants for the anhydrotetracycline-TetR interaction are below the detection level of 10(5) M(-1) for the mutant with a loop of two alanine residues and increase sharply until a loop size of ten residues is reached. TetR variants with longer loops have similar anhydrotetracycline-binding constants, ranging between 2.6 x 10(9) M(-1) and 8.0 x 10(9) M(-1), about 500-fold lower than wild-type TetR. The increase of the affinity occurs at shorter loop lengths than that of inducibility. We conclude that the induction defect of the polyalanine variants arises from two increments: (i) the loop must have a minimal length-to allow efficient inducer binding; (ii) the loop must structurally participate in the conformational change associated with induction.  相似文献   

16.
Interaction between receptors and ligands plays a critical role in the generation of immune responses. The 2B4 (CD244), a member of the CD2 subset of the Ig superfamily, is the high affinity ligand for CD48. It is expressed on NK cells, T cells, monocytes, and basophils. Recent data indicate that 2B4/CD48 interactions regulate NK and T lymphocyte functions. In human NK cells, 2B4/CD48 interaction induces activation signals, whereas in murine NK cells it sends inhibitory signals. To determine the structural basis for 2B4/CD48 interaction, selected amino acid residues in the V domain of the human 2B4 (h2B4) were mutated to alanine by site-directed mutagenesis. Following transient expression of these mutants in B16F10 melanoma cells, their interaction with soluble CD48-Fc fusion protein was assessed by flow cytometry. We identified amino acid residues in the extracellular domain of h2B4 that are involved in interacting with CD48. Binding of CD48-Fc fusion protein to RNK-16 cells stably transfected with wild-type and a double-mutant Lys(68)Ala-Glu(70)Ala h2B4 further demonstrated that Lys(68) and Glu(70) in the V domain of h2B4 are essential for 2B4/CD48 interaction. Functional analysis indicated that Lys(68) and Glu(70) in the extracellular domain of h2B4 play a key role in the activation of human NK cells through 2B4/CD48 interaction.  相似文献   

17.
Restrictocin, a member of the alpha-sarcin family of site-specific endoribonucleases, uses electrostatic interactions to bind to the ribosome and to RNA oligonucleotides, including the minimal specific substrate, the sarcin/ricin loop (SRL) of 23S-28S rRNA. Restrictocin binds to the SRL by forming a ground-state E:S complex that is stabilized predominantly by Coulomb interactions and depends on neither the sequence nor structure of the RNA, suggesting a nonspecific complex. The 22 cationic residues of restrictocin are dispersed throughout this protein surface, complicating a priori identification of a Coulomb interacting surface. Structural studies have identified an enzyme-substrate interface, which is expected to overlap with the electrostatic E:S interface. Here, we identified restrictocin residues that contribute to binding in the E:S complex by determining the salt dependence [partial differential log(k 2/ K 1/2)/ partial differential log[KCl]] of cleavage of the minimal SRL substrate for eight point mutants within the protein designed to disrupt contacts in the crystallographically defined interface. Relative to the wild-type salt dependence of -4.1, a subset of the mutants clustering near the active site shows significant changes in salt dependence, with differences of magnitude being >or=0.4. This same subset was identified using calculated salt dependencies for each mutant derived from solutions to the nonlinear Poisson-Boltzmann equation. Our findings support a mechanism in which specific residues on the active site face of restrictocin (primarily K110, K111, and K113) contribute to formation of the E:S complex, thereby positioning the SRL substrate for site-specific cleavage. The same restrictocin residues are expected to facilitate targeting of the SRL on the surface of the ribosome.  相似文献   

18.
Contributions of basic residues to ribosomal protein L11 recognition of RNA   总被引:3,自引:0,他引:3  
The C-terminal domain of ribosomal protein L11, L11-C76, binds in the distorted minor groove of a helix within a 58 nucleotide domain of 23 S rRNA. To study the electrostatic component of RNA recognition in this protein, arginine and lysine residues have been individually mutated to alanine or methionine residues at the nine sequence positions that are conserved as basic residues among bacterial L11 homologs. In measurements of the salt dependence of RNA-binding, five of these mutants have a reduced value of - partial differentiallog(K(obs))/ partial differentiallog[KCl] as compared to the parent L11-C76 sequence, indicating that these residues interact with the RNA electrostatic field. These five residues are located at the perimeter of the RNA-binding surface of the protein; all five of them form salt bridges with phosphates in the crystal structure of the complex. A sixth residue, Lys47, was found to make an electrostatic contribution to binding when measurements were made at pH 6.0, but not at pH 7.0; its pK in the free protein must be <6.5. The unusual behavior of Lys47 is explained by its burial in the hydrophobic core of the free protein, and unburial in the RNA-bound protein, where it forms a salt bridge with a phosphate. The contributions of these six residues to the electrostatic component of binding are not additive; thus the magnitude of the salt dependence cannot be used to count the number of ionic interactions in this complex. By interacting with irregular features of the RNA backbone, including an S-turn, these basic residues contribute to the specificity of L11 for its target site.  相似文献   

19.
The active sites of caspases are composed of four mobile loops. A loop (L2) from one half of the dimer interacts with a loop (L2′) from the other half of the dimer to bind substrate. In an inactive form, the two L2′ loops form a cross‐dimer hydrogen‐bond network over the dimer interface. Although the L2′ loop has been implicated as playing a central role in the formation of the active‐site loop bundle, its precise role in catalysis has not been shown. A detailed understanding of the active and inactive conformations is essential to control the caspase function. We have interrogated the contributions of the residues in the L2′ loop to catalytic function and enzyme stability. In wild‐type and all mutants, active‐site binding results in substantial stabilization of the complex. One mutation, P214A, is significantly destabilized in the ligand‐free conformation, but is as stable as wild type when bound to substrate, indicating that caspase‐7 rests in different conformations in the absence and presence of substrate. Residues K212 and I213 in the L2′ loop are shown to be essential for substrate‐binding and thus proper catalytic function of the caspase. In the crystal structure of I213A, the void created by side‐chain deletion is compensated for by rearrangement of tyrosine 211 to fill the void, suggesting that the requirements of substrate‐binding are sufficiently strong to induce the active conformation. Thus, although the L2′ loop makes no direct contacts with substrate, it is essential for buttressing the substrate‐binding groove and is central to native catalytic efficiency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号