首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Comparative accuracy of methods for protein sequence similarity search   总被引:2,自引:0,他引:2  
MOTIVATION: Searching a protein sequence database for homologs is a powerful tool for discovering the structure and function of a sequence. Two new methods for searching sequence databases have recently been described: Probabilistic Smith-Waterman (PSW), which is based on Hidden Markov models for a single sequence using a standard scoring matrix, and a new version of BLAST (WU-BLAST2), which uses Sum statistics for gapped alignments. RESULTS: This paper compares and contrasts the effectiveness of these methods with three older methods (Smith- Waterman: SSEARCH, FASTA and BLASTP). The analysis indicates that the new methods are useful, and often offer improved accuracy. These tools are compared using a curated (by Bill Pearson) version of the annotated portion of PIR 39. Three different statistical criteria are utilized: equivalence number, minimum errors and the receiver operating characteristic. For complete-length protein query sequences from large families, PSW's accuracy is superior to that of the other methods, but its accuracy is poor when used with partial-length query sequences. False negatives are twice as common as false positives irrespective of the search methods if a family-specific threshold score that minimizes the total number of errors (i.e. the most favorable threshold score possible) is used. Thus, sensitivity, not selectivity, is the major problem. Among the analyzed methods using default parameters, the best accuracy was obtained from SSEARCH and PSW for complete-length proteins, and the two BLAST programs, plus SSEARCH, for partial-length proteins.   相似文献   

2.
MOTIVATION: It is widely recognized that homology search and ortholog clustering are very useful for analyzing biological sequences. However, recent growth of sequence database size makes homolog detection difficult, and rapid and accurate methods are required. RESULTS: We present a novel method for fast and accurate homology detection, assuming that the Smith-Waterman (SW) scores between all similar sequence pairs in a target database are computed and stored. In this method, SW alignment is computed only if the upper bound, which is derived from our novel inequality, is higher than the given threshold. In contrast to other methods such as FASTA and BLAST, this method is guaranteed to find all sequences whose scores against the query are higher than the specified threshold. Results of computational experiments suggest that the method is dozens of times faster than SSEARCH if genome sequence data of closely related species are available.  相似文献   

3.
Alignment of protein sequences by their profiles   总被引:7,自引:0,他引:7  
The accuracy of an alignment between two protein sequences can be improved by including other detectably related sequences in the comparison. We optimize and benchmark such an approach that relies on aligning two multiple sequence alignments, each one including one of the two protein sequences. Thirteen different protocols for creating and comparing profiles corresponding to the multiple sequence alignments are implemented in the SALIGN command of MODELLER. A test set of 200 pairwise, structure-based alignments with sequence identities below 40% is used to benchmark the 13 protocols as well as a number of previously described sequence alignment methods, including heuristic pairwise sequence alignment by BLAST, pairwise sequence alignment by global dynamic programming with an affine gap penalty function by the ALIGN command of MODELLER, sequence-profile alignment by PSI-BLAST, Hidden Markov Model methods implemented in SAM and LOBSTER, pairwise sequence alignment relying on predicted local structure by SEA, and multiple sequence alignment by CLUSTALW and COMPASS. The alignment accuracies of the best new protocols were significantly better than those of the other tested methods. For example, the fraction of the correctly aligned residues relative to the structure-based alignment by the best protocol is 56%, which can be compared with the accuracies of 26%, 42%, 43%, 48%, 50%, 49%, 43%, and 43% for the other methods, respectively. The new method is currently applied to large-scale comparative protein structure modeling of all known sequences.  相似文献   

4.
Pairwise sequence alignment is a central problem in bioinformatics, which forms the basis of various other applications. Two related sequences are expected to have a high alignment score, but relatedness is usually judged by statistical significance rather than by alignment score. Recently, it was shown that pairwise statistical significance gives promising results as an alternative to database statistical significance for getting individual significance estimates of pairwise alignment scores. The improvement was mainly attributed to making the statistical significance estimation process more sequence-specific and database-independent. In this paper, we use sequence-specific and position-specific substitution matrices to derive the estimates of pairwise statistical significance, which is expected to use more sequence-specific information in estimating pairwise statistical significance. Experiments on a benchmark database with sequence-specific substitution matrices at different levels of sequence-specific contribution were conducted, and results confirm that using sequence-specific substitution matrices for estimating pairwise statistical significance is significantly better than using a standard matrix like BLOSUM62, and than database statistical significance estimates reported by popular database search programs like BLAST, PSI-BLAST (without pretrained PSSMs), and SSEARCH on a benchmark database, but with pretrained PSSMs, PSI-BLAST results are significantly better. Further, using position-specific substitution matrices for estimating pairwise statistical significance gives significantly better results even than PSI-BLAST using pretrained PSSMs.  相似文献   

5.
Making sense of score statistics for sequence alignments   总被引:1,自引:0,他引:1  
The search for similarity between two biological sequences lies at the core of many applications in bioinformatics. This paper aims to highlight a few of the principles that should be kept in mind when evaluating the statistical significance of alignments between sequences. The extreme value distribution is first introduced, which in most cases describes the distribution of alignment scores between a query and a database. The effects of the similarity matrix and gap penalty values on the score distribution are then examined, and it is shown that the alignment statistics can undergo an abrupt phase transition. A few types of random sequence databases used in the estimation of statistical significance are presented, and the statistics employed by the BLAST, FASTA and PRSS programs are compared. Finally the different strategies used to assess the statistical significance of the matches produced by profiles and hidden Markov models are presented.  相似文献   

6.
Two new sets of scoring matrices are introduced: H2 for the protein sequence comparison and T2 for the protein sequence-structure correlation. Each element of H2 or T2 measures the frequency with which a pair of amino acid types in one protein, k-residues apart in the sequence, is aligned with another pair of residues, of given amino acid types (for H2) or in given structural states (for T2), in other structurally homologous proteins. There are four types, corresponding to the k-values of 1 to 4, for both H2 and T2. These matrices were set up using a large number of structurally homologous protein pairs, with little sequence homology between the pair, that were recently generated using the structure comparison program SHEBA. The two scoring matrices were incorporated into the main body of the sequence alignment program SSEARCH in the FASTA package and tested in a fold recognition setting in which a set of 107 test sequences were aligned to each of a panel of 3,539 domains that represent all known protein structures. Six procedures were tested; the straight Smith-Waterman (SW) and FASTA procedures, which used the Blosum62 single residue type substitution matrix; BLAST and PSI-BLAST procedures, which also used the Blosum62 matrix; PASH, which used Blosum62 and H2 matrices; and PASSC, which used Blosum62, H2, and T2 matrices. All procedures gave similar results when the probe and target sequences had greater than 30% sequence identity. However, when the sequence identity was below 30%, a similar structure could be found for more sequences using PASSC than using any other procedure. PASH and PSI-BLAST gave the next best results.  相似文献   

7.
MOTIVATION: Comprehensive performance assessment is important for improving sequence database search methods. Sensitivity, selectivity and speed are three major yet usually conflicting evaluation criteria. The average precision (AP) measure aims to combine the sensitivity and selectivity features of a search algorithm. It can be easily visualized and extended to analyze results from a set of queries. Finally, the time-AP plot can clearly show the overall performance of different search methods. RESULTS: Experiments are performed based on the SCOP database. Popular sequence comparison algorithms, namely Smith-Waterman (SSEARCH), FASTA, BLAST and PSI-BLAST are evaluated. We find that (1) the low-complexity segment filtration procedure in BLAST actually harms its overall search quality; (2) AP scores of different search methods are approximately in proportion of the logarithm of search time; and (3) homologs in protein families with many members tend to be more obscure than those in small families. This measure may be helpful for developing new search algorithms and can guide researchers in selecting most suitable search methods. AVAILABILITY: Test sets and source code of this evaluation tool are available upon request.  相似文献   

8.
Seven protein structure comparison methods and two sequence comparison programs were evaluated on their ability to detect either protein homologs or domains with the same topology (fold) as defined by the CATH structure database. The structure alignment programs Dali, Structal, Combinatorial Extension (CE), VAST, and Matras were tested along with SGM and PRIDE, which calculate a structural distance between two domains without aligning them. We also tested two sequence alignment programs, SSEARCH and PSI-BLAST. Depending upon the level of selectivity and error model, structure alignment programs can detect roughly twice as many homologous domains in CATH as sequence alignment programs. Dali finds the most homologs, 321-533 of 1120 possible true positives (28.7%-45.7%), at an error rate of 0.1 errors per query (EPQ), whereas PSI-BLAST finds 365 true positives (32.6%), regardless of the error model. At an EPQ of 1.0, Dali finds 42%-70% of possible homologs, whereas Matras finds 49%-57%; PSI-BLAST finds 36.9%. However, Dali achieves >84% coverage before the first error for half of the families tested. Dali and PSI-BLAST find 9.2% and 5.2%, respectively, of the 7056 possible topology pairs at an EPQ of 0.1 and 19.5, and 5.9% at an EPQ of 1.0. Most statistical significance estimates reported by the structural alignment programs overestimate the significance of an alignment by orders of magnitude when compared with the actual distribution of errors. These results help quantify the statistical distinction between analogous and homologous structures, and provide a benchmark for structure comparison statistics.  相似文献   

9.
10.
MOTIVATION: The global alignment of protein sequence pairs is often used in the classification and analysis of full-length sequences. The calculation of a Z-score for the comparison gives a length and composition corrected measure of the similarity between the sequences. However, the Z-score alone, does not indicate the likely biological significance of the similarity. In this paper, all pairs of domains from 250 sequences belonging to different SCOP folds were aligned and Z-scores calculated. The distribution of Z-scores was fitted with a peak distribution from which the probability of obtaining a given Z-score from the global alignment of two protein sequences of unrelated fold was calculated. A similar analysis was applied to subsequence pairs found by the Smith-Waterman algorithm. These analyses allow the probability that two protein sequences share the same fold to be estimated by global sequence alignment. RESULTS: The relationship between Z-score and probability varied little over the matrix/gap penalty combinations examined. However, an average shift of +4.7 was observed for Z-scores derived from global alignment of locally-aligned subsequences compared to global alignment of the full-length sequences. This shift was shown to be the result of pre-selection by local alignment, rather than any structural similarity in the subsequences. The search ability of both methods was benchmarked against the SCOP superfamily classification and showed that global alignment Z-scores generated from the entire sequence are as effective as SSEARCH at low error rates and more effective at higher error rates. However, global alignment Z-scores generated from the best locally-aligned subsequence were significantly less effective than SSEARCH. The method of estimating statistical significance described here was shown to give similar values to SSEARCH and BLAST, providing confidence in the significance estimation. AVAILABILITY: Software to apply the statistics to global alignments is available from http://barton.ebi.ac.uk. CONTACT: geoff@ebi.ac.uk  相似文献   

11.
MOTIVATION: The BLAST program for comparing two sequences assumes independent sequences in its random model. The resulting random alignment matrices have correlations across their diagonals. Analytic formulas for the BLAST p-value essentially neglect these correlations and are equivalent to a random model with independent diagonals. Progress on the independent diagonals model has been surprisingly rapid, but the practical magnitude of the correlations it neglects remains unknown. In addition, BLAST uses a finite-size correction that is particularly important when either of the sequences being compared is short. Several formulas for the finite-size correction have now been given, but the corresponding errors in the BLAST p-values have not been quantified. As the lengths of compared sequences tend to infinity, it is also theoretically unknown whether the neglected correlations vanish faster than the finite-size correction. RESULTS: Because we required certain analytic formulas, our study restricted its computer experiments to ungapped sequence alignment. We expect some of our conclusions to extend qualitatively to gapped sequence alignment, however. With this caveat, the finite-size correction appeared to vanish faster than the neglected correlations. Although the finite-size correction underestimated the BLAST p-value, it improved the approximation substantially for all but very short sequences. In practice, the Altschul-Gish finite-size correction was superior to Spouge's. The independent diagonals model was always within a factor of 2 of the true BLAST p-value, although fitting p-value parameters from it probably is unwise. CONTACT: spouge@ncbi.nlm.nih.gov  相似文献   

12.
Yeast glycoproteins are representative of low-complexity sequences, those sequences rich in a few types of amino acids. Low-complexity protein sequences comprise more than 10% of the proteome but are poorly aligned by existing methods. Under default conditions, BLAST and FASTA use the scoring matrix BLOSUM62, which is optimized for sequences with diverse amino acid compositions. Because low-complexity sequences are rich in a few amino acids, these tools tend to align the most common residues in nonhomologous positions, thereby generating anomalously high scores, deviations from the expected extreme value distribution, and small e values. This anomalous scoring prevents BLOSUM62-based BLAST and FASTA from identifying correct homologs for proteins with low-complexity sequences, including Saccharomyces cerevisiae wall proteins. We have devised and empirically tested scoring matrices that compensate for the overrepresentation of some amino acids in any query sequence in different ways. These matrices were tested for sensitivity in finding true homologs, discrimination against nonhomologous and random sequences, conformance to the extreme value distribution, and accuracy of e values. Of the tested matrices, the two best matrices (called E and gtQ) gave reliable alignments in BLAST and FASTA searches, identified a consistent set of paralogs of the yeast cell wall test set proteins, and improved the consistency of secondary structure predictions for cell wall proteins.  相似文献   

13.
Molecular modeling of proteins is confronted with the problem of finding homologous proteins, especially when few identities remain after the process of molecular evolution. Using even the most recent methods based on sequence identity detection, structural relationships are still difficult to establish with high reliability. As protein structures are more conserved than sequences, we investigated the possibility of using protein secondary structure comparison (observed or predicted structures) to discriminate between related and unrelated proteins sequences in the range of 10%-30% sequence identity. Pairwise comparison of secondary structures have been measured using the structural overlap (Sov) parameter. In this article, we show that if the secondary structures likeness is >50%, most of the pairs are structurally related. Taking into account the secondary structures of proteins that have been detected by BLAST, FASTA, or SSEARCH in the noisy region (with high E: value), we show that distantly related protein sequences (even with <20% identity) can be still identified. This strategy can be used to identify three-dimensional templates in homology modeling by finding unexpected related proteins and to select proteins for experimental investigation in a structural genomic approach, as well as for genome annotation.  相似文献   

14.
The most popular algorithms employed in the pairwise alignment of protein primary structures (Smith-Watermann (SW) algorithm, FASTA, BLAST, etc.) only analyze the amino acid sequence. The SW algorithm is the most accurate, yielding alignments that agree best with superimpositions of the corresponding spatial structures of proteins. However, even the SW algorithm fails to reproduce the spatial structure alignment when the sequence identity is lower than 30%. The objective of this work was to develop a new and more accurate algorithm taking the secondary structure of proteins into account. The alignments generated by this algorithm and having the maximal weight with the secondary structure considered proved to be more accurate than SW alignments. With sequences having less than 30% identity, the accuracy (i.e., the portion of reproduced positions of a reference alignment obtained by superimposing the protein spatial structures) of the new algorithm is 58 vs. 35% of the SW algorithm. The accuracy of the new algorithm is much the same with secondary structures established experimentally or predicted theoretically. Hence, the algorithm is applicable to proteins with unknown spatial structures. The program is available at ftp://194.149.64.196/STRUSWER/.  相似文献   

15.
BALSA: Bayesian algorithm for local sequence alignment   总被引:3,自引:1,他引:2       下载免费PDF全文
The Smith–Waterman algorithm yields a single alignment, which, albeit optimal, can be strongly affected by the choice of the scoring matrix and the gap penalties. Additionally, the scores obtained are dependent upon the lengths of the aligned sequences, requiring a post-analysis conversion. To overcome some of these shortcomings, we developed a Bayesian algorithm for local sequence alignment (BALSA), that takes into account the uncertainty associated with all unknown variables by incorporating in its forward sums a series of scoring matrices, gap parameters and all possible alignments. The algorithm can return both the joint and the marginal optimal alignments, samples of alignments drawn from the posterior distribution and the posterior probabilities of gap penalties and scoring matrices. Furthermore, it automatically adjusts for variations in sequence lengths. BALSA was compared with SSEARCH, to date the best performing dynamic programming algorithm in the detection of structural neighbors. Using the SCOP databases PDB40D-B and PDB90D-B, BALSA detected 19.8 and 41.3% of remote homologs whereas SSEARCH detected 18.4 and 38% at an error rate of 1% errors per query over the databases, respectively.  相似文献   

16.
Han Si  Lee SG  Kim KH  Choi CJ  Kim YH  Hwang KS 《Bio Systems》2006,84(3):175-182
Most multiple gene sequence alignment methods rely on conventions regarding the score of a multiple alignment in pairwise fashion. Therefore, as the number of sequences increases, the runtime of sequencing expands exponentially. In order to solve the problem, this paper presents a multiple sequence alignment method using a linear-time suffix tree algorithm to cluster similar sequences at one time without pairwise alignment. After searching for common subsequences, cross-matching common subsequences were generated, and sometimes inexact matching was found. So, a procedure aimed at masking the inexact cross-matching pairs was suggested here. In addition, BLAST was combined with a clustering tool in order to annotate the clusters generated by suffix tree clustering. The proposed method for clustering and annotating genes consists of the following steps: (1) construction of a suffix tree; (2) searching and overlapping common subsequences; (3) grouping subsequence pairs; (4) masking cross-matching pairs; (5) clustering gene sequences; (6) annotating gene clusters by the BLAST search. The performance of the proposed system, CLAGen, was successfully evaluated with 42 gene sequences in a TCA cycle (a citrate cycle) of bacteria. The system generated 11 clusters and found the longest subsequences of each cluster, which are biologically significant.  相似文献   

17.
Vorolign, a fast and flexible structural alignment method for two or more protein structures is introduced. The method aligns protein structures using double dynamic programming and measures the similarity of two residues based on the evolutionary conservation of their corresponding Voronoi-contacts in the protein structure. This similarity function allows aligning protein structures even in cases where structural flexibilities exist. Multiple structural alignments are generated from a set of pairwise alignments using a consistency-based, progressive multiple alignment strategy. RESULTS: The performance of Vorolign is evaluated for different applications of protein structure comparison, including automatic family detection as well as pairwise and multiple structure alignment. Vorolign accurately detects the correct family, superfamily or fold of a protein with respect to the SCOP classification on a set of difficult target structures. A scan against a database of >4000 proteins takes on average 1 min per target. The performance of Vorolign in calculating pairwise and multiple alignments is found to be comparable with other pairwise and multiple protein structure alignment methods. AVAILABILITY: Vorolign is freely available for academic users as a web server at http://www.bio.ifi.lmu.de/Vorolign  相似文献   

18.
Sequence alignment programs such as BLAST and PSI-BLAST are used routinely in pairwise, profile-based, or intermediate-sequence-search (ISS) methods to detect remote homologies for the purposes of fold assignment and comparative modeling. Yet, the sequence alignment quality of these methods at low sequence identity is not known. We have used the CE structure alignment program (Shindyalov and Bourne, Prot Eng 1998;11:739) to derive sequence alignments for all superfamily and family-level related proteins in the SCOP domain database. CE aligns structures and their sequences based on distances within each protein, rather than on interprotein distances. We compared BLAST, PSI-BLAST, CLUSTALW, and ISS alignments with the CE structural alignments. We found that global alignments with CLUSTALW were very poor at low sequence identity (<25%), as judged by the CE alignments. We used PSI-BLAST to search the nonredundant sequence database (nr) with every sequence in SCOP using up to four iterations. The resulting matrix was used to search a database of SCOP sequences. PSI-BLAST is only slightly better than BLAST in alignment accuracy on a per-residue basis, but PSI-BLAST matrix alignments are much longer than BLAST's, and so align correctly a larger fraction of the total number of aligned residues in the structure alignments. Any two SCOP sequences in the same superfamily that shared a hit or hits in the nr PSI-BLAST searches were identified as linked by the shared intermediate sequence. We examined the quality of the longest SCOP-query/ SCOP-hit alignment via an intermediate sequence, and found that ISS produced longer alignments than PSI-BLAST searches alone, of nearly comparable per-residue quality. At 10-15% sequence identity, BLAST correctly aligns 28%, PSI-BLAST 40%, and ISS 46% of residues according to the structure alignments. We also compared CE structure alignments with FSSP structure alignments generated by the DALI program. In contrast to the sequence methods, CE and structure alignments from the FSSP database identically align 75% of residue pairs at the 10-15% level of sequence identity, indicating that there is substantial room for improvement in these sequence alignment methods. BLAST produced alignments for 8% of the 10,665 nonimmunoglobulin SCOP superfamily sequence pairs (nearly all <25% sequence identity), PSI-BLAST matched 17% and the double-PSI-BLAST ISS method aligned 38% with E-values <10.0. The results indicate that intermediate sequences may be useful not only in fold assignment but also in achieving more complete sequence alignments for comparative modeling.  相似文献   

19.
MOTIVATION: Sequence alignment techniques have been developed into extremely powerful tools for identifying the folding families and function of proteins in newly sequenced genomes. For a sufficiently low sequence identity it is necessary to incorporate additional structural information to positively detect homologous proteins. We have carried out an extensive analysis of the effectiveness of incorporating secondary structure information directly into the alignments for fold recognition and identification of distant protein homologs. A secondary structure similarity matrix based on a database of three-dimensionally aligned proteins was first constructed. An iterative application of dynamic programming was used which incorporates linear combinations of amino acid and secondary structure sequence similarity scores. Initially, only primary sequence information is used. Subsequently contributions from secondary structure are phased in and new homologous proteins are positively identified if their scores are consistent with the predetermined error rate. RESULTS: We used the SCOP40 database, where only PDB sequences that have 40% homology or less are included, to calibrate homology detection by the combined amino acid and secondary structure sequence alignments. Combining predicted secondary structure with sequence information results in a 8-15% increase in homology detection within SCOP40 relative to the pairwise alignments using only amino acid sequence data at an error rate of 0.01 errors per query; a 35% increase is observed when the actual secondary structure sequences are used. Incorporating predicted secondary structure information in the analysis of six small genomes yields an improvement in the homology detection of approximately 20% over SSEARCH pairwise alignments, but no improvement in the total number of homologs detected over PSI-BLAST, at an error rate of 0.01 errors per query. However, because the pairwise alignments based on combinations of amino acid and secondary structure similarity are different from those produced by PSI-BLAST and the error rates can be calibrated, it is possible to combine the results of both searches. An additional 25% relative improvement in the number of genes identified at an error rate of 0.01 is observed when the data is pooled in this way. Similarly for the SCOP40 dataset, PSI-BLAST detected 15% of all possible homologs, whereas the pooled results increased the total number of homologs detected to 19%. These results are compared with recent reports of homology detection using sequence profiling methods. AVAILABILITY: Secondary structure alignment homepage at http://lutece.rutgers.edu/ssas CONTACT: anders@rutchem.rutgers.edu; ronlevy@lutece.rutgers.edu Supplementary Information: Genome sequence/structure alignment results at http://lutece.rutgers.edu/ss_fold_predictions.  相似文献   

20.
Protein homology detection by HMM-HMM comparison   总被引:22,自引:4,他引:18  
MOTIVATION: Protein homology detection and sequence alignment are at the basis of protein structure prediction, function prediction and evolution. RESULTS: We have generalized the alignment of protein sequences with a profile hidden Markov model (HMM) to the case of pairwise alignment of profile HMMs. We present a method for detecting distant homologous relationships between proteins based on this approach. The method (HHsearch) is benchmarked together with BLAST, PSI-BLAST, HMMER and the profile-profile comparison tools PROF_SIM and COMPASS, in an all-against-all comparison of a database of 3691 protein domains from SCOP 1.63 with pairwise sequence identities below 20%.Sensitivity: When the predicted secondary structure is included in the HMMs, HHsearch is able to detect between 2.7 and 4.2 times more homologs than PSI-BLAST or HMMER and between 1.44 and 1.9 times more than COMPASS or PROF_SIM for a rate of false positives of 10%. Approximately half of the improvement over the profile-profile comparison methods is attributable to the use of profile HMMs in place of simple profiles. Alignment quality: Higher sensitivity is mirrored by an increased alignment quality. HHsearch produced 1.2, 1.7 and 3.3 times more good alignments ('balanced' score >0.3) than the next best method (COMPASS), and 1.6, 2.9 and 9.4 times more than PSI-BLAST, at the family, superfamily and fold level, respectively.Speed: HHsearch scans a query of 200 residues against 3691 domains in 33 s on an AMD64 2GHz PC. This is 10 times faster than PROF_SIM and 17 times faster than COMPASS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号