首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The aberrant release of the neurotransmitters, glutamate and calcitonin-gene related peptide (CGRP), from trigeminal neurons has been implicated in migraine. The voltage-gated P/Q-type calcium channel has a critical role in controlling neurotransmitter release and has been linked to Familial Hemiplegic Migraine. Therefore, we examined the importance of voltage-dependent calcium channels in controlling release of glutamate and CGRP from trigeminal ganglion neurons isolated from male and female rats and grown in culture. Serotonergic pathways are likely involved in migraine, as triptans, a class of 5-HT1 receptor agonists, are effective in the treatment of migraine and their effectiveness may be due to inhibiting neurotransmitter release from trigeminal neurons. We also studied the effect of serotonin receptor activation on release of glutamate and CGRP from trigeminal neurons grown in culture.

Results

P/Q-, N- and L-type channels each mediate a significant fraction of potassium-stimulated release of glutamate and CGRP. We determined that 5-HT significantly inhibits potassium-stimulated release of both glutamate and CGRP. Serotonergic inhibition of both CGRP and glutamate release can be blocked by pertussis toxin and NAS-181, a 5-HT1B/1D antagonist. Stimulated release of CGRP is unaffected by Y-25130, a 5-HT3 antagonist and SB 200646, a 5-HT2B/2C antagonist.

Conclusion

These data suggest that release of both glutamate and CGRP from trigeminal neurons is controlled by calcium channels and modulated by 5-HT signaling in a pertussis-toxin dependent manner and probably via 5-HT1 receptor signaling. This is the first characterization of glutamate release from trigeminal neurons grown in culture.  相似文献   

2.
There have been few pharmacological studies of serotonergic system dynamics in insects. A more precise knowledge of the response of serotonergic neurons to drugs will contribute to understanding of the role of this neurotransmitter in insect behaviour. The present work was carried out to study several aspects of serotonin (5-HT) metabolism and release in an insect, the butterfly Inachis io. The effects of a single intra-abdominal injection of reserpine (30 pg/insect) or p-chloroamphetamine (50 microg/insect) on cerebral ganglia 5-HT metabolism and release were studied. After reserpine injection a depletion of 5-HT stores concomitant with an increase in N-acetylserotonin levels was observed, but not significant alteration of extraneuronal 5-HT release was observed. Administration of p-chloroamphetamine (PCA) induced extraneuronal 5-HT release, together with inhibition of its reuptake. Finally, a single injection of p-chloroamphetamine in reserpine-treated insects was able to induce new release of 5-HT. Reserpine interferes with the vesicular storage of 5-HT, but does not affect the process of neuronal release, while PCA induces the synaptic release of 5-HT and inhibits its reuptake. These effects are similar to those observed in mammals.  相似文献   

3.
In order to assess a role of 5-HT(1B) receptors for regulation of GABA transmission in the ventral tegmental area (VTA), VTA slices from the rat were incubated with [(3)H]GABA and beta-alanine, and superfused in the presence of nipecotic acid and aminooxyacetic acid. [(3)H]GABA release was induced by exposures to the medium containing 30 mM potassium for 2 min. The results showed that high potassium-evoked [(3)H]GABA release was sensitive to calcium withdrawal or blockade of sodium channels by tetrodotoxin, suggesting that tritium overflow induced by high potassium derived largely from neuronal stores. Administration of CP 93129 (0.15 and 0.45 microM), a 5-HT(1B) receptor agonist, or RU 24969 (0.15 and 0.45 microM), a 5-HT(1B/1A) receptor agonist, but not 8-OH-DPAT (0.45 microM), a 5-HT(1A) receptor agonist, inhibited high potassium-evoked [(3)H]GABA release in a concentration-related manner. The RU 24969-induced inhibition of [(3)H]GABA release was antagonized by either SB 216641, a 5-H(1B) receptor antagonist, or cyanopindolol, a 5-HT(1B/1A) receptor antagonist, but not by WAY 100635, a 5-HT(1A) receptor antagonist. Pre-treatment with SB 216641 also antagonized CP 93129-induced inhibition of [(3)H]GABA release. The results support the hypothesis that 5-HT(1B) receptors within the VTA can function as heteroreceptors to inhibit GABA release.  相似文献   

4.
We have investigated the modulation of the intracellular calcium concentration ([Ca2+]i) in rat C6 glioma cells following their activation by the agonists 5-hydroxytryptamine·HCl (5-HT) and bradykinin, using single cell imaging of [Ca2+]i with the calcium-sensitive dye Fura-2. The majority of the signals observed involved release of calcium from intracellular stores, and after prolonged application of 5-HT, but not bradykinin, the cells exhibited oscillations in [Ca2+]i levels. These calcium oscillations were dependent on the presence of extracellular calcium, and were unaffected by the calcium channel antagonists nifedipine and verapamil. Caffeine, which in other cell types is able to release calcium from inositol trisphosphate-insentive stores, had very little effect on [Ca2+]i levels in C6 cells. On the other hand, bradykinin, although able to elevate [Ca2+]i probably by acting via the B2-receptor subtype, was unable to induce any calcium oscillations in these cells.  相似文献   

5.
Three serotonin (5-HT) neurotoxins,p-chlorophenylalanine (PCPA, 125 and 250 mg/kg, i.p.),p-chloroamphetamine (PCA, 10 mg/kg, i.p.) and 5,7-dihydroxytryptamine (5,7-DHT, 200 µg/rat, i.c.v.) were used to examine whether depletion of central 5-HT has an effect on central dopaminergic (DA) neuronal activities or on prolactin (PRL) secretion. Adult ovariectomized Sprague-Dawley rats primed with estrogen (polyestradiol phosphate, 0.1 mg/rat, s.c.) were treated with one of three neurotoxins and then decapitated in the morning after 3–7 days. Blood sample and brain tissues were collected. The acute effect of PCA (from 30 to 180 min) was also determined. The concentrations of 5-HT, DA and their metabolites, 5-hydroxyindoleacetic acid and 3,4-dihydroxyphenylacetic acid, in the median eminence, striatum and nucleus accumbens were determined by HPLC-electrochemical detection. All three toxins significantly depleted central 5-HT stores by 11–20%. Except for PCPA, neither PCA nor 5,7-DHT had any significant effect on basal DA neuronal activities or PRL secretion. PCA also exhibited an acute effect on the release and reuptake of 5-HT and DA. In summary, depletion of central 5-HT stores to a significant extent for 3–7 days did not seem to affect basal DA neuronal activity and PRL secretion.  相似文献   

6.
A J Dunn 《Life sciences》1988,42(19):1847-1853
Brain concentrations of tryptophan, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) and plasma amino acids were measured after 15 or 30 minutes of intermittent footshock. Footshock treatment significantly decreased the content of 5-HT in prefrontal cortex and hypothalamus, but not brainstem at 15 min, but the decreases were reversed by 30 min. 5-HIAA, the major catabolite of 5-HT, increased in prefrontal cortex after 15 min, and in prefrontal cortex and hypothalamus after 30 min footshock. 5-HIAA:5-HT ratios were increased at both timepoints in all three brain regions. Concomitant changes in the ratios of 3,4-dihydroxyphenylacetic acid (DOPAC) to dopamine and 3-methoxy,-4-hydroxyphenylethyleneglycol (MHPG) to norepinephrine were also observed. Brain concentrations of tryptophan increased progressively during the footshock in all three brain regions. Plasma concentrations of both tryptophan and tyrosine were also significantly increased, while those of histidine and lysine were decreased. It is possible that the stress-related changes in 5-HT metabolism are due to increased plasma tryptophan, in turn causing increased brain tryptophan and 5-HT synthesis. However, the transient decreases in 5-HT suggest a footshock-induced increase of 5-HT release, depleting existing stores of 5-HT, that are replenished by the increased systemic availability of tryptophan.  相似文献   

7.
We analyze the time course of 5-hydroxytryptamine (5-HT, serotonin) release from K+-depolarized hippocampal slices using a two-compartment kinetic model. The model is based on the assumptions that the rate of release is dependent on the amount of 5-HT in a releasable pool and that this pool may be resupplied during depolarization by newly synthesized 5-HT. Comparisons were made between predictions of the model and observed changes in 5-HT metabolism and in 5-HT release studied under a variety of experimental conditions. In accordance with predictions of the model, experimental manipulation of 5-HT synthesis and breakdown rates did not affect release immediately after depolarization but did affect the release rate during prolonged depolarization. Increasing bath tryptophan from 0 to 10 microM approximately doubled both 5-HT synthesis and the release rate after 40 min of K+-induced depolarization while having a smaller effect on release during the first 2 min. Inhibition of 5-HT breakdown did not significantly affect release during the first 2 min of depolarization but increased it over threefold after 40 min. In contrast, altering the concentrations of K+ or Ca2+ in the incubation medium affected mainly the early phase of 5-HT release and not the late phase. Reducing Ca2+ from 2.4 to 0.4 mM reduced 5-HT release by about 30% during the first 9 min of depolarization but did not affect release during the subsequent 30 min. Increasing the concentration of K+ from 18 to 60 mM stimulated release by sixfold during the first 2 min but only twofold after a subsequent 30 min. These results support our kinetic model and suggest that regulation of 5-HT metabolism at the site of the nerve terminal could be a mechanism for modulation of 5-HT release during prolonged discharge of serotonergic neurons.  相似文献   

8.
The effect of L-tryptophan, 5-hydroxy-L-tryptophan (5-HTP), and 5-hydroxytryptamine (5-HT) on the K+-evoked release of [3H]5-HT from superfused rat brain synaptosomes was studied. 5-HT at concentrations above 10 nM significantly inhibited the K+-evoked release of [3H]5-HT. A slight enhancement of [3H]5-HT release was observed at a concentration of 5nM. In contrast tryptophan at a concentration of 10 nM significantly enhanced [3H]5-HT release with little effect at higher concentrations. 5-HTP did not significantly effect [3H]5-HT release. The results confirm previous findings that 5-HT inhibits its own release from nerve endings, and demonstrate that low concentrations of tryptophan in the synaptic region may act as a positive feedback regulator of 5-HT release.  相似文献   

9.
5-hydroxytryptamine (5-HT) is a precursor and a putative modulator for melatonin synthesis in mammalian pinealocytes. 5-HT is present in organelles distinct from l-glutamate-containing synaptic-like microvesicles as well as in the cytoplasm of pinealocytes, and is secreted upon stimulation by norepinephrine (NE) to enhance serotonin N-acetyltransferase activity via the 5-HT2 receptor. However, the mechanism underlying the secretion of 5-HT from pinealocytes is unknown. In this study, we show that NE-evoked release of 5-HT is largely dependent on Ca2+ in rat pinealocytes in culture. Omission of Ca2+ from the medium and incubation of pineal cells with EGTA-tetraacetoxymethyl-ester inhibited by 59 and 97% the NE-evoked 5-HT release, respectively. Phenylephrine also triggered the Ca2+-dependent release of 5-HT, which was blocked by phentolamine, an alpha antagonist, but not by propranolol, a beta antagonist. Botulinum neurotoxin type E cleaved 25 kDa synaptosomal-associated protein and inhibited by 50% of the NE-evoked 5-HT release. Bafilomycin A1, an inhibitor of vacuolar H+-ATPase, and reserpine and tetrabenazine, inhibitors of vesicular monoamine transporter, all decreased the storage of vesicular 5-HT followed by inhibition of the NE-evoked 5-HT release. Agents that trigger L-glutamte exocytosis such as acetylcholine did not trigger any Ca2+-dependent 5-HT release. Vice versa neither NE nor phenylephrine caused synaptic-like microvesicle-mediated l-glutamate exocytosis. These results indicated that upon stimulation of a adrenoceptors pinealocytes secrete 5-HT through a Ca2+-dependent exocytotic mechanism, which is distinct from the exocytosis of synaptic-like microvesicles.  相似文献   

10.
Mother sporocysts of Schistosoma mansoni transport exogenously supplied serotonin (5-hydroxytrypamine; 5-HT), and respond to it with increases in motility. In the present study, we investigated the importance of 5-HT transporter activity in the manifestation of these 5-HT-induced motility changes, and further examined the role of 5-HT in the development of daughter sporocysts in vitro. Serotonin-induced motility of in vitro-derived sporocysts is not inhibited by antidepressant compounds, e.g., fluoxetine, that block 5-HT transport, suggesting that the receptors responsible for motility responses to 5-HT are surface exposed. Using a sporocyst in vitro culture system, we show that depletion of larval stores of 5-HT reduces production of daughter sporocysts, the second intramolluscan larval stage. Moreover, we demonstrate a strong correlation between endogenous 5-HT levels and basal mother sporocyst muscle activity. Overall, these data suggest that larval stages of S. mansoni can detect exogenous 5-HT via surface-exposed receptors, and they are consistent with the hypothesis that endogenous stores of 5-HT are important for the proper regulation of muscular contractions in mother sporocysts, and for the successful emergence of daughter sporocysts.  相似文献   

11.
D T Chou  H Cuzzone  K R Hirsh 《Life sciences》1983,33(12):1149-1156
We have previously reported that caffeine significantly enhanced 5-HT uptake and reduced 5-HT release from crude synaptosomal fractions obtained from rat cerebral cortex and from midbrain raphe region. Blood platelets, as reported by many laboratories and also demonstrated in our own labs, have a very active mechanism for 5-HT uptake and storage. In this regard platelets bear a high degree of similarity to brain serotonin neurons. The present experiments were, therefore, carried out to investigate the effects of caffeine on 5-HT uptake and release from rat platelets in an attempt to assess the possibility of using platelets as a model for studying the CNS effects of caffeine. Platelet rich plasma was prepared from the trunk blood of decapitated rats. Effects of caffeine were investigated at 10(-7), 10(-6), 10(-5) and 10(-4)M, on both the high affinity 3H-5-HT uptake and the spontaneous 5-HT release from 3H-5-HT preloaded platelets. The results show that caffeine did not change 5-HT uptake into platelets. In brain synaptosomes the same concentration of caffeine, however, increased 5-HT uptake dose-dependently. The results also revealed that caffeine increased 5-HT release from rat platelets in a concentration-dependent manner. The concentrations 10(-6), 10(-5), and 10(-4)M increased release significantly compared to control. This finding is also in contrast to that observed in synaptosomes of brain serotonin neurons where caffeine decreased 5-HT release. It is concluded, therefore, that the rat blood platelet is not a suitable model for studying these CNS actions of caffeine. Furthermore, our observations imply that rat platelet serotonin uptake and release mechanisms are not identical to those mechanisms in brain serotonin neurons.  相似文献   

12.
Regulation of release processes in central serotoninergic neurons   总被引:2,自引:0,他引:2  
Different technical, physiological and biochemical aspects concerning the study of the release of 5-HT are discussed herein. Isotopic methods are the most suitable techniques since these allow the release of 3H-5-HT to be measured after having determined the identity of the labelled compounds formed from 3H-tryptophan by co-chromatography. Under these conditions, the 3H-amine released in the superfusates comes from serotoninergic nerve endings, since tryptophan hydroxylase is exclusively localized in serotoninergic neurons. Moreover, it appears that newly synthesized 5-HT is preferentially released. The release of 5-HT is dependent on neuronal activity, but is not always linked to the synthesis of 5-HT. The increase in the firing rate of serotoninergic cell bodies by a local application of glutamate in the area of the nucleus raphe dorsalis induces a marked increase n the release of 5-HT in the caudate nucleus; an opposite effect is observed after cooling this region. The local depolarization of serotoninergic terminals located in the caudate nucleus increases the release of this amine. This effect is blocked by TTX. LSD reduces the stimulating effect of KCl, thus indicating that the release of 5-HT can be controlled at a presynaptic level. In addition, the release of the amine is dependent on the presence of calcium. Serotoninergic neuronal activity can be controlled at the preterminal or at the cell body levels by the activity of other neuronal systems. The effects of the release of dopamine from dendrites, and that of GABA in the substantia nigra are reported herein. Furthermore, changes in the activity of the dopaminergic, gabaergic and serotoninergic systems innervating the nucleus raphe dorsalis modulate the release of 5-HT, measured both in the caudate nucleus and in the nucleus raphe magnus. Finally, it has been reported that the release of 5-HT can be estimated in the raphe nuclei dorsalis and magnus. It has been shown that the amounts of 3H-5-HT continuously formed from 3H-TRP and released in the nucleus raphe dorsalis are much greater than those estimated in the caudate nucleus or in the substantia nigra. Although the quantities of endogenous 5-HT measured in the nucleus raphe dorsalis are the highest in the brain, this structure presents only a few serotoninergic nerve endings. This raises the question of the origin of the 5-HT released in serotoninergic nuclei. A possible dendritic release of 5-HT is discussed.  相似文献   

13.
The serotonergic system may play a role during general anesthesia but the effect of the volatile anesthetic halothane on the release of serotonin (5-HT) is not fully understood. Rat brain cortical slices were labeled with [3H]5-HT to investigate the effects of halothane on the release of this neurotransmitter from the central nervous system. Halothane induced an increase on the release of [3H]5-HT that was dependent on incubation time and anesthetic concentration (0.006, 0.012, 0.024, 0.036, 0.048 and 0.072 mM). This effect was independent of extracellular calcium and was not affected by tetrodotoxin (blocker of voltage dependent Na+ channels). In contrast, the halothane-evoked [3H]5-HT release was reduced by BAPTA-AM, a membrane-permeable BAPTA analog that chelates intracellular Ca2+. The anesthetic-induced [3H]5-HT release depends on the ryanodine-sensitive intracellular calcium store since it was blocked by dantrolene and azumolene (inhibitors of the calcium-release through ryanodine receptors) but was not affected by aminoethoxydiphenylborate (2-APB), an inhibitor of inositol 1,4,5-triphosphate receptor. The [3H]5-HT release induced by halothane comes mainly from the vesicular pool since it was reduced in about 70% by reserpine, a blocker of vesicular monoamine transporter. The halothane-evoked release of [3H]5-HT release is reduced by fluoxetine, an inhibitor of 5-HT uptake, and the volatile agent also decreased the uptake of [3H]5-HT into rat brain cortical slices. Moreover, a decrease on halothane-induced release of [3H]5-HT was also observed when the brain cortical slices were incubated at low temperature, which is known to interfere with the carrier-mediated release of the neurotransmitter. Ouabain, a Na+/K+ ATPase pump inhibitor, which induces 5-HT release through reverse transport, also decreased [3H]5-HT release induced by halothane, confirming the involvement of a carrier-mediated release of the neurotransmitter in the presence of halothane. In conclusion, these data suggest that halothane induces vesicular and carrier-mediated release of [3H]5-HT in rat brain cortical slices.  相似文献   

14.
The C. elegans eat-6 gene encodes a Na+, K+-ATPase α subunit and is a homolog of the familial hemiplegic migraine candidate gene FHM2. Migraine is the most common neurological disorder linked to serotonergic dysfunction. We sought to study the pathophysiological mechanisms of migraine and their relation to serotonin (5-HT) signaling using C. elegans as a genetic model. In C. elegans, exogenous 5-HT inhibits paralysis induced by the acetylcholinesterase inhibitor aldicarb. We found that the eat-6(ad467) mutation or RNAi of eat-6 increases aldicarb sensitivity and causes complete resistance to 5-HT treatment, indicating that EAT-6 is a component of the pathway that couples 5-HT signaling and ACh neurotransmission. While a postsynaptic role of EAT-6 at the bodywall NMJs has been well established, we found that EAT-6 may in addition regulate presynaptic ACh neurotransmission. We show that eat-6 is expressed in ventral cord ACh motor neurons, and that cell-specific RNAi of eat-6 in the ACh neurons leads to hypersensitivity to aldicarb. Electron microscopy showed an increased number of synaptic vesicles in the ACh neurons in the eat-6(ad467) mutant. Genetic analyses suggest that EAT-6 interacts with EGL-30 Gαq, EGL-8 phospholipase C and SLO-1 BK channel signaling to modulate ACh neurotransmission and that either reduced or excessive EAT-6 function may lead to increased ACh neurotransmission. Study of the interaction between eat-6 and 5-HT receptors revealed both stimulatory and inhibitory 5-HT inputs to the NMJs. We show that the inhibitory and stimulatory 5-HT signals arise from distinct 5-HT neurons. The role of eat-6 in modulation of excitatory neurotransmission by 5-HT may provide a genetic explanation for the therapeutic effects of the drugs targeting 5-HT receptors in the treatment of migraine patients.  相似文献   

15.
A superfusion system employed to measure the K+-stimulated release of [3H]5-hydroxytryptamine [(3H]5-HT, [3H]serotonin) from a synaptosomal-rich spinal cord tissue preparation was carefully characterized, then used to examine the regulation of spinal 5-HT release. Spinal 5-HT release is apparently modulated by an autoreceptor. Exogenous 5-HT depressed, in a concentration-dependent manner, the K+-stimulated release of [3H]5-HT. Similarly, lysergic acid diethylamide (LSD) produced a concentration-dependent decrease in [3H]5-HT release. Methiothepin and quipazine blocked the inhibition of release induced by exogenous 5-HT. The 5-HT2 receptor antagonists spiperone and ketanserin failed to alter the action of 5-HT at the spinal 5-HT autoreceptor. Spiperone and ketanserin were shown, however, to alter the storage of [3H]5-HT. When used in concentrations greater than 10 nM, the drugs evoked increases in basal [3H]5-HT and [3H]5-hydroxyindoleacetic acid ( [3H]5-HIAA) effluxes which were independent of the presence of calcium ions. A good agreement existed between the potencies of drugs for modifying autoreceptor function and their abilities to compete for high-affinity [3H]5-HT binding in the spinal cord (designated 5-HT1). Furthermore quipazine, in concentrations that preferentially interact with the 5-HT1B subtype, antagonized the actions of exogenous 5-HT on K+-stimulated release. Spiperone, in a concentration that approximated the affinity constant of 5-HT1A sites for the drug, was ineffective in altering the ability of exogenous 5-HT to modulate K+-stimulated [3H]5-HT release. These results suggest that 5-HT1B sites are associated with serotonergic autoreceptor function in the spinal cord.  相似文献   

16.
Primary anterior pituitary cell cultures were utilized to study the influence of serotonin (5-HT) directly on the pituitary. Cells incubated with 10(-5) and 10(-4) M 5-HT exhibited a significant prolactin (Prl) release, whereas cells incubated with 10(-10) to 10(-6) M 5-HT did not. Cells incubated with 10(-10) to 10(-4) M quipazine (5-HT agonist) or methysergide (MES; 5-HT antagonist) did not release Prl in amounts greater/less (P greater than 0.01) than spontaneous release. Luteinizing hormone (LH) release from cells incubated in the presence of 5-HT, quipazine, or MES was similar to spontaneous release. The hypothalamic extract-induced Prl and LH release from cells was not influenced by quipazine, but Prl release was diminished in a dose-related fashion by MES. The influence of 5-HT on hypothalamic induction of Prl and LH release was investigated utilizing in vitro culture of hypothalamic fragments (HF). Media samples from HF incubated with 10(-6) and 10(-4) M 5-HT induced a release of Prl. Media samples from HF incubated with 10(-4) M MES induced less Prl release than media samples from control fragments. When HF were incubated with both 10(-4) M 5-HT and 10(-4) M MES, the expected 5-HT-mediated Prl release was not evident. These culturing situations had no influence on LH release. In vitro Prl release from pituitary cells of the young turkey was stimulated through 5-HT activity at the hypothalamus, but not by direct 5-HT action on the pituitary cells.  相似文献   

17.
S Hjorth  T Sharp 《Life sciences》1991,48(18):1779-1786
Recent electrophysiological studies, measurements of 5-HT synthesis and in vivo voltammetry recordings of 5-HT metabolism have suggested that serotoninergic neurones in the median raphe (MR) are less sensitive to 5-HT1A autoreceptor stimulation relative to those in the dorsal raphe (DR). To further study the putative differences in regulation between ascending 5-HT projections from the raphe nuclei we have used microdialysis to measure the release of 5-HT in ventral hippocampus, globus pallidus, dorsal hippocampus, frontal cortex, nucleus accumbens and medial septum, following systemic administration of the specific 5-HT1A agonist 8-OH-DPAT. The results show that the baseline output of 5-HT was similar in each of the areas studied. While 8-OH-DPAT decreased dialysate levels of 5-HT in all areas, the inhibition of 5-HT release seen in globus pallidus was significantly less marked compared to that observed in the other five regions. The results indicate that 5-HT1A autoreceptor-mediated control of 5-HT release is functional in all of the brain areas studied, including those receiving a preferential 5-HT innervation from the DR and MR. We find little evidence in support of the idea that brain 5-HT neuronal projections are heterogenous with respect to 5-HT1A autoreceptor regulation of 5-HT release; the globus pallidus, however representing a possible exception to this.  相似文献   

18.
The release of 43K+, lactate dehydrogenase (LDH) and [14C]-5-hydroxytryptamine ([14C]-5-HT) from platelets treated with sphingosine and four differently charged model amphiphiles was studied. Sphingosine was found to differ from the detergents because it induced a concentration-dependent release of both 43K+ and [14C]-5-HT without causing a release of LDH. The release of [14C]-5-HT preceded the release of 43K+ and it is concluded that these effects are associated with platelet activation. The detergents caused a release of 43K+ followed by a release of LDH without causing a release of [14C]-5-HT. These effects are attributed to a non-specific perturbation of the platelet plasma membrane.  相似文献   

19.
Evolution and function in serotonergic systems   总被引:1,自引:0,他引:1  
Serotonergic systems of invertebrate and vertebrate centralnervous systems (CNS) are functionally similar in multiple characters.Serotonin (5-HT) neurons dispersed throughout the CNS of lophotrochozoaninvertebrates (molluscs and leeches) are analogous to vertebrate5-HT neurons concentrated in the raphe nuclei of mid- and hindbrain:they innervate specific central pattern generators and othercircuits of the CNS, receive feedback from them, and supportgeneral behavioral arousal. In both groups 5-HT regulates excitatorygain of CNS circuitry and uses similarly diverse 5-HT receptors.Marked contrast, however, exists for roles of 5-HT in regulationof appetite. Where invertebrate 5-HT neurons promote an appetitivestate, this role is supplanted in the vertebrates by a peptidergicnetwork centered around orexins/hypocretins, to which the roleof 5-HT in arousal is subordinate. In the vertebrates, 5-HThas appetite-suppressant properties. This is paralleled by differingcomplexities of mechanisms that bring about satiety. Lophotrozoansappear to rely on simple stretching of the gut, with no obviousfeedback from true nutrient stores. In contrast, vertebrateappetite is regulated by hypothalamic sensitivity to hormonalsignals reporting separately on the status of fat cells anddigestive activity, and to blood glucose, in addition to gutstretch. The simple satiety mechanism of a mollusc can be usedin value-based foraging decisions that integrate hunger state,taste, and experience (Gillette and others 2000). For vertebrates,where appetite and arousal are regulated by signals from long-livednutrient stores, decisions can be based on resource need goingfar beyond simple gut content, enabling value estimation andrisk assessment in the longer-term. Thus, connection of nutrientstorage depots to CNS circuitry mediating appetite may supplycritical substrate for evolving complexity in brain and behavior.This hypothesis may be tested in expanded comparative studiesof 5-HT and peptidergic functions in appetite and arousal.  相似文献   

20.
An HPLC assay with fluorometric detection has been developed that is sensitive enough to measure simultaneously endogenous levels of tryptophan, serotonin (5-hydroxytryptamine, or 5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) inside synaptosomes as well as that released into the incubation medium. Using this assay, we have observed that tryptophan is rapidly taken up by synaptosomes and turned over to 5-HIAA without a concurrent release of 5-HT. Exogenous 5-HT is also rapidly taken up, and, within 20-30 min, 80% of the 5-HT is deaminated. Veratridine induces release of both tryptophan and 5-HT from synaptosomes. Changes in the disposition of exogenous tryptophan or 5-HT can be completely accounted for by uptake or by stoichiometric changes in metabolites. This assay method should be valuable in the study of 5-HT pools and in the determination of from which pool 5-HT release occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号